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The associative learning effects called blocking and highlighting have previously been explained by
covert learned attention, but evidence for learned attention has been indirect, via models of response
choice. The present research reports results from eye tracking consistent with the attentional hypothesis:
Gaze duration is diminished for blocked cues and augmented for highlighted cues. If degree of attentional
learning varies across individuals but is relatively stable within individuals, then the magnitude of
blocking and highlighting should covary across individuals. This predicted correlation is obtained for
both choice and eye gaze. A connectionist model that implements attentional learning is shown to fit the
data and account for individual differences by variation in its attentional parameters.
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The phenomenon of blocking has become a touchstone for
theories of learning. Reported initially by Kamin (1968, 1969) and
found thereafter in numerous species and procedures, the phenom-
enon forced a revolution in theories of learning. In the blocking
procedure, a person initially learns to predict an outcome from a
single cue. Subsequently, the cue is always accompanied by a
second cue, still leading to the same outcome. People tend not to
learn a strong association between the second cue and the out-
come; that is, previous learning about the first cue has blocked
learning about the second cue. This blocking challenges some
theories of learning because the second cue has co-occurred with
the outcome quite often and their association should be learned.

A complementary phenomenon called highlighting suggests
augmented learning about a cue, in contrast to the diminished
learning in blocking (Kruschke, 2003a). This phenomenon is ex-
tremely challenging to learning theories, even those that were
created to account for blocking (such as the Rescorla-Wagner
model, which will be explained below). In a highlighting proce-
dure, participants initially learn that a pair of cues leads to an

outcome. Later, participants learn that one of those cues, paired
with a different cue, leads to a different outcome. The result is that
the association from the distinctive cue to the later-learned out-
come is apparently very strong; that is, learning about the distinc-
tive cue has been highlighted.

To our knowledge, only attentional theory (Kruschke, 2003a)
explains both highlighting and blocking. According to this ap-
proach, highlighting occurs because people have learned to attend
to the distinctive cue for the new outcome. Blocking occurs, at
least in part but not fully, because people have learned to ignore
the redundant cue. The attentional theory will be explained in more
detail later; for now we wish to emphasize that the attention
posited in this theory is a theoretical construct referring to a covert
aspect of cognition. The formal theory simply states that more
strongly attended cues are multiplied by a larger factor in respond-
ing and learning. The magnitude of the covert attentional factor is
inferred from observed choice data via a mathematical model.

The present research is based on the additional premise that
overt eye gaze is correlated with the covert attention hypothesized
by the learning theory. If this is true, then blocked cues should be
gazed at less than control cues, and highlighted cues should be
gazed at more than control cues. In this article we report strong
confirmation of these predictions. Although the formal attentional
theory makes no commitment to the eye gaze premise, and al-
though the exact mechanisms by which covert attention is mani-
fested in eye gaze are unspecified, the new eye gaze results are
highly suggestive of attentional processes in associative learning.

In mathematical models of attentional learning (e.g., Kruschke,
2001b), the magnitude of attentional shifting and learning is gov-
erned by corresponding parameter values. These parameter values
might be determined in part by situational influences and random
noise. We make the additional assumption that the attentional
shifting and learning magnitudes are, in part, relatively stable and
enduring individual traits. This assumption implies that individuals
with low attentional shifting rates will show small amounts of
blocking and highlighting, whereas individuals with high atten-
tional shifting rates will show large amounts of blocking and
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highlighting. In other words, the magnitudes of blocking and
highlighting should covary across individuals.

This article reports the first experiment in which blocking and
highlighting have been measured in the same individuals. Results
confirm the predicted correlation of blocking and highlighting, in
both choice responses and in eye gaze. Although it is conceivable
that other individual differences could account for the observed
covariation of blocking and highlighting, the new results are highly
suggestive of attentional processes in associative learning.

To bolster the argument that attention can account for covaria-
tion of blocking and highlighting, we present results of computer
simulations of the EXIT model (Kruschke, 2001a, 2001b). The
model was originally proposed to address choice proportions only;
in this article we introduce a mapping from attention in the model
to eye gaze in human data. The simulations demonstrate that
blocking, highlighting, and eye gaze covary robustly with atten-
tional parameters. Changing nonattentional parameters, such as
associative learning rate or choice decisiveness, do not yield such
correlations.

In subsequent sections of this introduction, we describe the
designs of typical blocking and highlighting experiments, and we
supply a few more details and background for attentional learning
theory. We also provide a little more justification for the hypoth-
esis bridging covert attention to eye gaze and provide some back-
ground regarding individual differences in attention and learning.
After the introduction, we present the new experiment and its
results. Subsequently, we describe model simulations demonstrat-
ing how the model accounts for covariation of blocking and
highlighting. We conclude with a review of the main results and a
brief discussion of the multifaceted aspects of attention in learning.

Blocking and Highlighting Designs

Table 1 shows details of a typical design for a blocking exper-
iment. In the early training phase, a trial with cue A always has
outcome X, denoted A3X in Table 1. During this early phase,
intermixed trials of F3Y occur so that the learner must discrim-
inate A and X from other potential cues and outcomes. After
A3X has been well learned, the later training phase includes trials
of cue A always accompanied by a second cue B, still leading to
the same outcome, and denoted A.B3X in Table 1. To test the
degree of learning about cue B, the later training phase includes an
equal number of trials of C.D3Y. If all that matters for learning
is the frequency of co-occurrence, then the strength of association

from B to X should be the same as the strength of association from
D to Y. To test this prediction, the final test phase includes trials
that display cues B and D together (denoted B.D3?), asking
participants to provide their best guess on the basis of what they
have learned. Results for probe B.D3? are that people have a
strong preference for outcome Y, which suggests that the associ-
ation from D to Y is stronger than the association from B to X.

Table 1 also shows details of a typical design for a highlighting
experiment. In the early training phase, people see trials with cues
PE and I indicating the outcome E, denoted I.PE3E in Table 1. E
denotes the early-learned outcome, PE denotes a perfect predictor
of outcome E, and I denotes an imperfect predictor. In the later
training phase, participants learn about a new outcome L indicated
by cues I and PL, denoted I.PL3L. Notice that the early- and
later-trained outcomes have symmetric cue structures: Each out-
come has one perfect predictor and one shared imperfect predictor.
If people learn the symmetry (e.g., as normative statistical models
require), then cue I should not be differentially predictive of the
outcomes, and cues PE and PL should be equally predictive of
their respective outcomes. This prediction is examined in the final
test phase. When presented with cue I by itself, there is a robust
tendency for people to respond with the early-trained outcome E.
But this tendency is not just a general preference for the higher
base-rate outcome in the face of ambiguous cues, because when
presented with cues PE and PL, there is a robust tendency to
respond with the later-trained outcome L. The results suggest that
people’s knowledge is asymmetric: Cue I is more strongly asso-
ciated with outcome E than with L, but cue PL is more strongly
associated with outcome L than cue PE is associated with
outcome E.

Explanations of Blocking and Highlighting

The dominant explanation of blocking states that associations
are built only when the outcome is surprising or mispredicted. This
idea of error-driven learning was formalized in the classic model
of Rescorla and Wagner (1972). When a learner sees a case of
A.B3X during the later training phase, the outcome X is fully
anticipated by the cue A. Therefore, because there is little surprise
in the outcome, there is little learning about cue B. Other theorists,
notably Mackintosh (1975), suggested that there is not merely lack
of learning about the redundant cue B, there is learned suppression
of attention to it. Some researchers take for granted the theoretical
stance that blocking involves learned (in-)attention (e.g., Crookes
& Moran, 2003), but evidence that attention is involved in block-
ing is relatively rare. One type of evidence comes from studies of
learning about a blocked cue subsequent to its being blocked. If
people have learned to ignore a blocked cue, then subsequent
learning about that cue should be retarded. This prediction has
been confirmed (in both humans and rats; Kruschke & Blair, 2000;
Mackintosh & Turner, 1971). Although the Rescorla–Wagner
model can explain blocking, per se, it cannot explain subsequent
retarded learning about a blocked cue. Notice that the two mech-
anisms are not mutually exclusive: There can be lack of learned
association and learned inattention simultaneously. Indeed, the
connectionist model described later incorporates both processes
governed by the same goal: error reduction.

The Rescorla–Wagner model also cannot explain highlighting,
because the model predicts that symmetric associations should

Table 1
Essence of Blocking and Highlighting Designs

Phase

Design

Blocking Highlighting

Early A3X F3Y I.PE3E

Late A.B3X C.D3Y I.PE3E I.PL3L

Test B.D3? (Y) PE.PL3? (L)
A.C3? (X) I3? (E)

Note. Each cell indicates cues3correct response. In the test phase, typ-
ical response tendencies are shown in parentheses.
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ultimately be learned. A variation of the model was proposed by
Markman (1989), whereby absent-but-expected cues are encoded
with negative activations, but no method was described whereby
cue expectancies could be learned, and this approach to highlight-
ing has not been further pursued in the literature. Juslin, Wenner-
holm, and Winman (2001) proposed that highlighting was not so
much a learning effect as a decision effect. According to this
theory, when a participant is presented in the test phase with a cue
combination that she or he does not know, such as PE.PL, the
participant infers that the correct outcome must be one that she or
he does not know. Therefore the participant eliminates the well-
known early-learned outcome E, and selects the poorly known
later-learned outcome L. Decision strategies such as eliminative
inference are, no doubt, being used by participants in these exper-
iments, but the particular approach proposed by Juslin et al. (2001)
was shown to have serious shortcomings by Kruschke (2001a). For
example, when human participants are presented with cue I by
itself, they tend to respond with outcome E, but when presented
with the triplet of cues I.PE.PL, the preference for outcome E is
greatly reduced or even reversed. This reduction is not addressed
by the eliminative inference model.

Highlighting seems currently to be best explained by attention
shifting. When learning the later-trained cases of I.PL3L, atten-
tion shifts away from cue I because cue I predicts the previously
learned outcome E. Instead, attention shifts to the distinctive cue
PL, and a strong association is learned between it and outcome L.
This type of attentional theory was described by Medin and Edel-
son (1988) to explain the inverse base-rate effect, from which the
highlighting effect was derived.

The attentional theory was formalized in the attention to dis-
tinctive input (ADIT) model (Kruschke, 1996) and its successor,
the EXIT model (Kruschke, 2001a, 2001b). The EXIT model has
been shown to account for both highlighting and retarded learning
after blocking. Later in this article we describe the EXIT model
more thoroughly and introduce predictions of eye gaze from at-
tentional strengths in the model. We also show that if we increase
the attentional parameters, then blocking and highlighting and gaze
preferences are simultaneously increased. Thus, if the attentional
parameter values are considered to reflect individual differences,
the model accounts for covariation of blocking and highlighting
and gaze preference across individuals.

Attention and Eye Gaze

The attentional theory of blocking and highlighting posits covert
attentional mechanisms. An attended cue is supposed to have a
stronger impact on responding, or a larger learning rate, or both.
These covert attentional processes influence overt choice prefer-
ences. These models fit choice data fairly well in a variety of
experiments. The good fits countenance the covert attentional
constructs. It would be even more compelling to have independent
evidence that selective attention to cues is involved.

One potential measure of attention to cues is eye gaze. Intu-
itively, a person should gaze longer at cues she or he has learned
to attend to than at cues she or he has learned to ignore. There is,
however, no necessary link between the covert attention posited by
learning theories and overt eye gaze. Indeed, there are reports of
failures to find cognitive processes reflected in eye gaze, when
there plausibly could have been (e.g., Anderson, Bothell, & Doug-

lass, 2004; Lohmeier, 1996). But there are many precedents sug-
gesting that eye gaze is an overt indicator of cognitive attention or
relevance. For example, Kaakinen, Hyönä, and Keenan (2002) had
people read expository text with a certain topical perspective in
mind, so that some topics would be more relevant to the reader
than others, and presumably the reader would pay more attention
to the relevant text than the irrelevant passages. The researchers
found that eye fixations on topic-relevant text were indeed of
longer duration than fixations on irrelevant text.

Most directly related to the present investigation, Rehder and
Hoffman (2005, in press) reported eye tracking results from cate-
gory learning tasks. Different cues were differently predictive of
the category label. People had to learn the correct category label
for each set of training cues. After learning the categories, people
looked longer (or even exclusively) at relevant cues than at irrel-
evant cues. The current investigation goes beyond Rehder and
Hoffman’s in several ways. First, the category structures are in-
terestingly different. Whereas Rehder and Hoffman noted corre-
spondences of eye gaze with dimensional relevance—meaning
simple monotonic correspondence of stimulus relevance with
gaze—we are looking for reduced gaze to a predictive cue (i.e., the
blocked cue B), differential looking to equally predictive cues (i.e.,
cues PE and PL in highlighting), and context specific gaze at a
single cue (i.e., cue I in highlighting). Second, we measure gaze at
present and absent cues in random locations, whereas Rehder and
Hoffman considered always-present dimensions in fixed locations.
Thus, in Rehder and Hoffman’s experiments, spatial location was
learned as an indicator of relevance, but in our experiments,
viewers looked at all cues and therefore differential gaze could be
much more subtle in magnitude. Third, we are specifically inter-
ested in assessing individual differences and correlations across
tasks. Fourth, we do explicit model fitting of choice and gaze
simultaneously, with emphasis on explaining correlated individual
differences via attentional parameters.

In summary, we have reasonable precedents for the hypothesis
that eye gaze could correlate with covert learned attention. The
hypothesis is bolstered by the new results reported in this article.

Individual Differences and Correlations

Our premise is that the degree of attentional shifting or learning
is, at least in part, an individual characteristic that is stable over
short time scales (but may change with context or over develop-
mental time ranges). In a formal model of attentional learning that
we detail later, individual levels of attentional processing are
reflected by parameter values that govern attention in the model.
The model predicts that as attentional shifting and learning in-
crease, so should the magnitudes of blocking and highlighting, as
measured by both choice and gaze. Therefore the magnitudes of
highlighting and blocking should covary across individuals.

There are numerous precedents for treating attentional ability as
a stable individual trait. Here we point out only a few.

Individual differences in blocking per se have been previously
reported and used as indices of attentional processing. For exam-
ple, Crookes and Moran (2003) found age and gender differences
in blocking. In their blocking task (called the mouse in house task),
people learned to associate color patches at the top of a computer
screen with displayed goal boxes to which they had to move the
cursor using a joystick. Learning (or lack thereof) was measured as
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the latency until the correct goal box was entered. The authors
found greater blocking for females than for males, and a larger
proportion of participants who showed blocking as age increased
through childhood to early adolescence. Crookes and Moran
(2003, p. 472) stated that “[blocking] can be interpreted as the
habitual filtering of unnecessary information” (i.e., as learned
inattention to the blocked cue). They were especially concerned
with blocking as a diagnostic measure of attentional abilities in the
context of schizophrenia, which tends to show symptoms in ado-
lescence and in males more than females. For our purposes, we
take this research as a precedent that there are meaningful indi-
vidual differences in blocking, and that these differences can be
interpreted in terms of attentional abilities.

Gibbons, Rammsayer, and Lubow (2001, Experiment 2) re-
ported correlated individual differences in two attentional learning
tasks. One task involved visual search, the other task involved
learning the relationship of a cue and an outcome. In the visual
search task, people had to determine whether a display consisted of
20 identical squiggles or, instead, had a single different squiggle
among 19 identical distractors. The design included an initial
phase with multiple trials that used the same distractor squiggles.
This phase was intended to encourage people to learn to ignore that
specific distractor. A subsequent phase included some trials in
which the initial distractor became the unique target among novel
distractors. Results showed relatively slow detection of the target
on these trials (i.e., apparently, people had indeed learned to ignore
the initial distractor). In the learning task, a trial display consisted
of letter trigrams surrounded by a polygonal shape, both of which
could change across trials. Participants had to learn what aspect of
the display indicated that a penalty counter would increment.
Participants could press a button when they thought the counter
was about to increment, thereby reducing the penalty if they were
correct. The indicative cue was the shape of the surrounding
polygon. The key result was that people were slower to learn about
the relevance of the polygon if they had been preexposed to a
situation in which the polygon was irrelevant. In the preexposure
task, people simply had to count the number of repetitions of the
trigrams while the surrounding polygon was held constant. Again,
the key findings for our purposes was that both effects were
interpreted in terms of learned attention and that there were indi-
vidual differences correlated across tasks.

Engle (2002) and colleagues have argued that individual ability
in executive attention, meaning the capacity to avoid distraction
from misleading cues, is crucial for explaining individual ability in
working memory. To provide evidence for the putative correlation
of attention and working memory, Kane, Bleckley, Conway, and
Engle (2001) used an eye tracking procedure to assess attention.
People were required to respond to a target that could appear on
either side of the display. The target was preceded by a prompt on
the opposite side of the display. People who were better able to
suppress visual saccades to the prompt tended to have higher
scores on working memory tasks. These results indicate individual
differences in attention, as measured by eye gaze, that are corre-
lated with short-term learning.

Beyond the empirical work cited above, there are also prece-
dents of formal modeling that specifically address individual dif-
ferences in learned attention. For example, Webb and Lee (2004)
examined individual differences in a category learning task re-
ported by Kruschke (1993). In that task, people learned to classify

simple rectangles that varied (across trials) in height and in the
position of an internal vertical line segment. In a filtration struc-
ture, people could learn to ignore one aspect (e.g., segment posi-
tion) and correctly classify by attending to the other aspect (e.g.,
height). Webb and Lee (2004) found individual differences in
patterns of learning (e.g., some participants achieved high accu-
racy very rapidly whereas others learned gradually). Webb and Lee
characterized those differences, in part, by different attentional
learning rates in a formal attentional learning covering map
(ALCOVE) model (Kruschke, 1992).

In summary, we described a few precedents for our hypotheses
regarding individual differences in attentional abilities. We estab-
lished that there are, in fact, individual differences in attentional
abilities, as manifested in associative blocking, antisaccade tasks,
visual search, learned irrelevance, and so on. Performance in these
attentional tasks covaries across individuals, such that people with
relatively high performance in one task tend to have relatively high
performance in another. Individual differences have been ad-
dressed in a formal model as differences in the value of an
attentional learning parameter. In the present research we apply
these ideas to eye gaze in blocking and highlighting. To the extent
that blocking and highlighting rely on attentional shifting and
learning, then magnitudes of blocking and highlighting should
covary across individuals.

Having given some background to motivate an expected corre-
lation between blocking and highlighting, it is worth mentioning
that such a correlation is by no means a foregone conclusion. For
example, the classic Rescorla-Wagner model of blocking predicts
no highlighting. The eliminative inference model of highlighting
(Juslin et al., 2001) predicts no blocking (see the subsection Other
Models near the end of this article). The rule-plus-exception
(RULEX) model (Nosofsky, Palmeri, & McKinley, 1994) might
address both blocking and highlighting, but it is unlikely that it
would predict any correlation of their magnitudes (again, see the
subsection Other Models below). In other words, there is no
necessary theoretical connection between magnitude of blocking
and magnitude of highlighting.

It would also be wrong to infer that blocking and highlighting
should be correlated just because the stimuli and learning task are
so similar. In other empirical work (Kappenman, Kruschke, &
Hetrick, 2005), we observed no hint of a correlation between
highlighting and illusory correlation, which is another learning
phenomenon related to base rates. Thus, it is not the case that any
two learning effects will correlate merely by virtue of generic task
similarity.

Never before has there been an investigation of blocking and
highlighting in the same individuals, and never before have eye
movements been measured during these tasks. Finding that block-
ing and highlighting covary would suggest that attention is in-
volved in both effects.

Experiment: Eye Tracking During Blocking and
Highlighting

Our goal was to measure eye gaze at the various cues. We
therefore required cues that must be fixated to be perceived and
that are spatially separated. Many previous experiments in block-
ing and highlighting have used written words as cues, and we
continued this procedure. Participants made responses by clicking
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with the cursor one of four boxes also marked by words. An
example of a stimulus display, with a superimposed eye gaze
trajectory, is shown in Figure 1. One cue is a word displayed in the
top left (orange) rectangle, and another cue is a different word
displayed in the top right (purple) rectangle. The left–right position
of the cues was counterbalanced across trials.

Every participant went through a blocking design and a high-
lighting design in counterbalanced order across participants. De-
tails of the implemented designs are shown in Tables 2 and 3.
These designs duplicate the abstract designs of Table 1. For
example, where the abstract design has A.B3X, the implemented
design has two copies: A1.B13X1 and A2.B23X2. This dupli-
cation makes more than one correct response possible in the early
phase of highlighting, so that participants cannot merely learn to
click a single response regardless of the cues. The duplication also
makes the task more challenging. Moreover, the left–right loca-
tions of the cues were counterbalanced; for example, both
A1.B13X1 and B1.A13X1 were displayed on different trials.

Each cue type appeared in a unique-color rectangle. For exam-
ple, for a given experiment run, the blocking cues A1 and A2 may
have always appeared on an orange rectangle, whereas the blocked
cues B1 and B2 may have always appeared on a purple rectangle.
The colors, therefore, did not indicate the correct response, be-
cause multiple correct responses occurred for any color. People
might therefore learn to ignore color. On the other hand, people
might learn to use the colors to guide attention (e.g., attending
more to the color of the blocking cues and less to the color of the

blocked cues). Results reported below indicate that color had little
if any effect on gaze preference, and so this aspect of the procedure
is not emphasized here.

Method

Participants

A total of 65 students from introductory psychology courses at Indiana
University participated for partial course credit. Students were asked to
participate only if they had normal (or corrected to normal) acuity and
color vision. Participants were also told that no eye makeup could be worn
at the time of the experiment because it could confuse the eye tracker.

Despite heroic attempts to coddle, cajole, and coerce the eye tracker, it
could not be successfully calibrated on some participants, leaving 42
participants in the blocking experiment and 37 participants in the high-
lighting experiment. The calibration failures appeared to be caused by long
or dark eye lashes or low-riding upper eye lids, which partially obscured
the pupil. Presumably, such superficial characteristics are not systemati-
cally correlated with learning and attention. Of the 42 participants in-
cluded, the mean age was 19.60 years (SD � 1.15), 25 were male and 17
were female, and 38 were right-handed and 4 were left-handed.

Apparatus

Participants were seated in front of a desktop computer with a 15 in.
monitor and a standard keyboard and mouse. The participant straddled a
rod that was attached to the seat and extended to the participant’s chin. The
rod height and angle were adjusted so that the chin could be comfortably

Figure 1. Example of a stimulus display with an eye gaze trajectory superimposed. Each colored dot represents
the gaze direction for 1/60th s. The trajectory begins with the green dots near the center, proceeds through the
yellow dots at the upper left cue and the orange dots at the upper right cue, and concludes at the red dots at the
lower right response box. (Plot generated in Matlab with a program created by John K. Kruschke.)
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rested. Participants were free to move their heads if necessary. At the lower
right (from the participant’s perspective) of the monitor was a small
electronic camera lens, aimed at the participant’s right eye. The camera
was wired to an eye tracking computer in an adjacent room.

We used a SensoMotoric Instruments (Needham, MA) system with
iView X software. This dark pupil system uses a remote eye tracking
camera without any apparatus mounted directly on the participant’s head.
The face and eye are illuminated by an infrared (IR) source that rides atop
the camera. The pupil appears dark to the IR sensors in the camera and the
pupil position is calculated every 1/60 s (16.7 ms) by pattern recognition
software. The camera is mounted on motors that automatically compensate
for small head motions, detected by the corneal reflex.

Stimuli

An example of the stimulus display is shown in Figure 1. The computer
monitor was approximately 70 cm from the viewer’s eyes. The cue words
were separated by 18.4 cm, that is, about 14.7° visual angle. Each cue word
was approximately 1.6 cm wide, therefore spanning approximately 1.3°
visual angle.

Stimulus and response words were limited to 5-letter nouns with famil-
iarity, imagability, and concreteness ratings of 500 or higher, as recorded
in the MRC Psycholinguistic Database (http://www.psy.uwa.edu.au/
mrcdatabase/uwa_mrc.htm). From this pool of candidate words, 20 were
chosen that had different initial letters and relatively few obvious semantic

Table 2
Details of Blocking Design

Phase Trial items Duration

Early A1.�3X1 �.A13X1 F1.�3Y1 �.F13Y1 Until 15/16 correct in 2
consec. blocks (3 min.)A2.�3X2 �.A23X2 F2.�3Y2 �.F23Y2

Late A1.B13X1 B1.A13X1 C1.D13Y1 D1.C13Y1 Until 15/16 correct in 2
consec. blocks (3 min.)A2.B23X2 B2.A23X2 C2.D23Y2 D2.C23Y2

Test A.B: (each shown twice) C.D: (each shown twice) 48 trials
A1.B13X1 B1.A13X1 C1.D13Y1 D1.C13Y1
A2.B23X2 B2.A23X2 C2.D23Y2 D2.C23Y2

D.B:
D1.B13? B1.D13? D2.B23? B2.D23?
D2.B13? B1.D23? D1.B23? B2.D13?
C1.B13? B1.C13? C2.B23? B2.C23?
C2.B13? B1.C23? C1.B23? B2.C13?

A.C:
A1.C13? C1.A13? A2.C23? C2.A23?
A1.C23? C2.A13? A2.C13? C1.A23?
A1.D13? D1.A13? A2.D23? D2.A23?
A1.D23? D2.A13? A2.D13? D1.A23?

Note. Trial items indicate left-cue.right-cue3correct-response. A “�” symbol indicates a cue position that was
unoccupied. Each cue type (A, B, C, D, and F) appeared in a different color. Consec. � consecutive; min. �
minimum.

Table 3
Details of Highlighting Design

Phase Trial items Duration

Early I1.PE13E1 PE1.I13E1 Until 11/12 correct in 3
consec. blocks (5 min.)I2.PE23E2 PE2.I23E2

Late, 3-to-1
base rates

I.PE, 3 times each: I.PL, 1 time each: 16 trials
I1.PE13E1 PE1.I13E1 I1.PL13L1 PL1.I13L1
I2.PE23E2 PE2.I23E2 I2.PL23L2 PL2.I23L2

Late, 1-to-3
base rates

I.PE, 1 time each: I.PL, 3 times each: 16 trials
I1.PE13E1 PE1.I13E1 I1.PL13L1 PL1.I13L1
I2.PE23E2 PE2.I23E2 I2.PL23L2 PL2.I23L2

Test I.PE, 1 time each: I.PL, 1 time each: 24 trials
I1.PE13E1 PE1.I13E1 I1.PL13L1 PL1.I13L1
I2.PE23E2 PE2.I23E2 I2.PL23L2 PL2.I23L2

I, 2 times each: PE.PL, 2 times each:
I1.�3? �.I13? PE1.PL13? PL1.PE13?
I2.�3? �.I23? PE2.PL23? PL2.PE23?

Note. Trial items indicate left-cue.right-cue3correct-response. A “�” symbol indicates a cue position that was
unoccupied. Each cue type (I, PE and PL) appeared in a different color. Consec. � consecutive; min. �
minimum.
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relationships (e.g., shark was excluded because of its strong semantic
relation to ocean). The assignment of words to cues and responses was
randomized anew for every participant and experiment design. The 20
words were as follows: apple, brain, cigar, daisy, elbow, frost, glass,
house, ivory, judge, knife, linen, movie, ocean, phone, queen, radio, skate,
tiger, world.

The cue words appeared on colored rectangles. The colors were chosen
to be highly distinctive and of roughly equal salience. The assignment of
colors to abstract cue types was randomized anew for each participant and
experiment design. The six colors were as follows (accompanied in paren-
theses by their corresponding red–green–blue [RGB] values on a 0–255
scale): green (0, 210, 0), blue (0, 100, 255), yellow (225, 225, 0), red (210,
50, 50), orange (255, 165, 0), and purple (211, 0, 252). The background
was always grey (190, 190, 190).

As indicated explicitly in Tables 2 and 3, the left–right positions of the
cues were counterbalanced across trials. If each cue had instead occupied
a unique position, then the mere presence or absence of each cue could
have been ascertained from the participant’s peripheral vision alone, and so
eye gaze would have been a useless measure. Previous experiments in-
volving highlighting and blocking have also used cues in varying positions;
it is not known whether fixed-location cues would alter these effects (cf.
Young & Wasserman, 2002).

The four response positions were fixed. In blocking, X1 was the upper
left and X2 was the lower right, and Y1 was the upper right and Y2 was
the lower left. In highlighting, E1 was the upper left and E2 was the lower
right, and L1 was upper right and L2 was lower left.

Procedure

Every participant learned the highlighting and blocking designs in an
order that was counterbalanced across participants. Before each design, the
eye tracker was calibrated using an automated nine-point procedure sup-
plied with the eye tracker. Within each experiment, the participant first
read instructions that included an example of the stimulus display.

Immediately after the instructions and before the beginning of training,
an additional calibration display was shown. This display allowed fine-
tuning of the approximate screen coordinates delivered by the eye tracker.
The pretraining calibration consisted of four blinking fixation spots, two
centered at the cue positions and two centered at lower response positions.
When analyzing the eye tracking data, a Matlab program written by the
first author determined the tracker-reported location during each fixation
spot1 and then determined the best linear mapping to the true fixation point
positions. This correction was applied to all subsequent tracker positions
for that experiment session.

Within each trial of training, color patches appeared with the response
prompt and response boxes for 750 ms. Then the cue words appeared in the
color patches. Participants made a response by moving the mouse (cursor)
and clicking a response box. The response prompt was then replaced by
corrective feedback, with the cues remaining visible. For correct responses,
the feedback said, “Yes! The correct answer is [word].” For incorrect
responses, the feedback said, “Wrong! The correct answer is [word]” and
was accompanied by a brief buzzing sound. On test trials for which no
correct answer was supplied, the feedback said, “Your response has been
recorded.” Participants could study the cues and feedback as long as they
liked. In all cases, the feedback was accompanied by a clickable box
labeled Next that appeared centered among the four response words, which
the participant had to click to see the next trial. The action of clicking this
target also centered the cursor among the four response options before each
trial. An intertrial blank screen of 500 ms occurred after the click.

The duration of each phase of training and testing is summarized in
Tables 2 and 3. In the blocking design, participants continued in each
training phase until a learning criterion was reached. Each training block
had eight trials, and participants had to achieve 15/16 correct across two
consecutive blocks (with a minimum of three blocks trained) before mov-

ing to the next phase. In the highlighting design, only the first phase had a
learning criterion, requiring 11/12 correct across three blocks of four trials
(with a minimum of five blocks trained).

Dependent Variable: Gaze Duration Difference

Figure 1 shows a particularly clear example of an eye gaze trajectory.
Each dot shows the gaze location at a sample 1/60th s. The total duration
of the trajectory is the time from cue onset (i.e., the blank colored
rectangles) to response click. The color of the dot indicates the relative time
at which the gaze was sampled, with green at the beginning, yellow in the
middle, and red at the end of the trajectory. Many trials were not this clean,
instead peppered with tracker noise, presumably uncorrelated with cue
identity. A rectangular region of interest (ROI) around each cue was
liberally defined to ensure that no gazes near the cues were omitted. The
colored rectangle behind each cue was 15% screen width by 10% screen
height, and the corresponding ROI was 27% screen width and 26% screen
height. On each trial, the gaze duration at each cue was defined simply as
the number of 1/60th sample locations within the corresponding ROI, from
cue onset until response. This gaze duration does not include gaze during
feedback or intertrial intervals.

Relative gaze duration was measured as follows. Consider a trial with
cue A displayed on the left and cue B displayed on the right. Denote the
time gazing at A on the left by AL, and the time gazing at B on the right by
BR. The difference, AL � BR, indicates how much more time was spent
gazing at A than at B. Unfortunately, the cause of that difference could be
either the identity of the cues or the position of the cues. It turns out that
the left cue tended to be gazed at first and longer than the right cue,
presumably because of the strong tendency for English readers to scan text
left to right. Fortunately, the positions of the cues were counterbalanced
across trials, and the position effect can be removed, on average, by
including the difference of gaze times when the positions of the cues were
reversed. We define AmBg � [(AL � BR) � (AR � BL)]/2, where the
notation AmBg is supposed to suggest A minus B for gaze durations. If the
difference in gaze times to A and B is caused only by position, then AmBg
will be zero. On the other hand, if A tends to be gazed at longer than B,
then AmBg will be positive. Analogous average differences are used
throughout the analyses below.

Results

We first report results regarding choice data, because there is
little motivation for examining the eye gaze data if blocking and
highlighting are not manifested in choice. Next we report the
results regarding eye gaze for both blocking and highlighting.
Finally, we consider individual differences and covariation across
individuals.

Whenever outliers are culled in the following analyses, outliers
are defined as any score below the 25th percentile minus 1.5 times
the interquartile range, or any score above the 75th percentile plus

1 The tracker-reported location of a fixation spot was determined as the
median location of gazes that were both in the proximity of the fixation
spot and stable across consecutive samples. A gaze was considered to be in
the proximity of the spot if it was within 12% of the screen width, left or
right of the spot, and within 14% of the screen height, above or below the
spot. A sample gaze was considered to be stable if it was within the
proximity of the two sample gazes immediately preceding it and the two
sample cases immediately succeeding it. A minimum of 150 proximal and
stable samples were used to determine the median location; otherwise the
calibration was considered unstable and the participants’ data were not
included in further analysis.
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1.5 times the interquartile range (and where the interquartile range
is the 75th percentile minus the 25th percentile). This is a conven-
tional definition (e.g., it is the default definition of outliers for
boxplots in SPSS statistical software).

We only included data from trials in which people actually
looked at the cues. That is, there were a few trials in which people
responded but the eye tracker recorded no gaze directed at the
cues. Those few trials were excluded from the data analysis. All
statistical tests are two-tailed, with significance (i.e., reliability)
taken to be p � .05.

In subsequent sections, all of the results are collapsed across
experiment order. Results were also examined separately for the
blocking-first and highlighting-first groups. The major trends were
evident within both orders, with no notable differences between
orders. There was little statistical power to detect differences,
however, because of the small sample size within each order.

All of the results were also examined for female or male
participants only. Both groups showed the same trends as the
collapsed data reported below, with no obvious differences. Again,
there was little statistical power to detect differences between
groups, so we could not detect sex differences analogous to those
reported by Crookes and Moran (2003).

We also examined gaze durations during the beginning of cue
presentation when the colored rectangles were blank. No statisti-
cally significant preferences were found, although there were some
weak trends consistent with blocking and highlighting as reported
below. We therefore report no further details of the blank rectangle
period. All of the gaze results reported below refer to the period
from blank rectangle onset to response click.

Response Choice

Blocking. We are interested only in data from participants who
retained memory of the training items in the test phase. Therefore
we first culled outlying individuals on the basis of total percentage
correct on the A.B and C.D training items in the test phase. There
was just one outlier, leaving N � 41 for subsequent analyses of the
blocking data.

Performance in the test phase on the training items was fairly
good. The test phase had eight A.B trials (see Table 2), with
average performance across the 41 participants of 92.3% correct.
Performance on the eight C.D trials was not quite as high, with
average accuracy of 87.7%. The somewhat low accuracy on C.D
trials is actually useful, however, insofar as it makes blocking
more challenging to demonstrate statistically, because the blocked
cue B must generate an even weaker response than the somewhat
weak control cues C and D.

On the test trials that combined the blocked cue B with control
cues C or D, participants chose the response corresponding with
the control cue 55.8% of the time and the response corresponding
with the blocked cue only 21.2% of the time. (The remaining
23.0% of responses were for the two remaining choices.) For each
participant we considered the 16 test trials that combined the
blocked cue B with control cues C or D (see test items labeled D.B
in Table 2) and counted the number of times the participant gave
the corresponding Y outcome, minus the number of times the
participant gave the corresponding X outcome, divided by the
number of D.B trials. This difference in choice proportions is
denoted DmBc, which is meant to suggest D minus B for choices.

The mean difference, DmBc, across the 41 participants was 34.5%,
which is reliably greater than zero, t(40) � 5.84, p � .001. Thus,
there was a robust blocking effect.

As a check that there was not merely a bias to choose the
control-cue response when conflicting cues appeared, we also
examined choice preferences for trials that combined the blocking
cue A with control cues C or D. Specifically, for each participant
we considered the 16 test trials that combined the blocking cue A
with control cues C or D (see test items labeled A.C in Table 2) and
counted the number of times the participant gave the correspond-
ing X outcome, minus the number of times the participant gave the
corresponding Y outcome, divided by the number of A.C trials.
This difference in choice proportions is denoted AmCc, which is
meant to suggest A minus C for choices. Overall, participants
chose the response corresponding with the blocking cue A 70.3%
of the time, and the response corresponding with the control cue
just 20.3% of the time. The mean difference of AmCc � 50.0%
was reliably greater than zero, t(40) � 8.30, p � .001.

In summary, both the D.B and A.C test items showed robust
choice preferences, indicating strong blocking. In subsequent cor-
relational analyses, the DmBc and AmCc choice preferences will
be summed to form an overall measure of a participant’s degree of
blocking as indicated by choice.

Highlighting. The attentional hypothesis relies on the assump-
tion that the later-trained I.PL3L items are actually learned. If
they are not learned well, then there is no basis for suggesting that
an attentional shift has been learned. Outlying individuals were
culled on the basis of total accuracy on the I.PE and I.PL training
items in the test phase. Only one outlier was identified, leaving 36
participants contributing data to subsequent analyses.

In the test phase, there were four trials each of I.PL and I.PE (see
Table 3). Accuracy on these items was fairly high: For I.PE, mean
accuracy across the 36 participants was 93.8% correct, and for
I.PL, the mean accuracy was 91.0%.

For a given participant, there were eight I test trials (one half of
which had I on the left and the other half of which had I on the
right; see Table 3). For each participant we counted the number of
choices for the corresponding E outcome and subtracted the num-
ber of choices for the corresponding L outcome, and divided the
difference by the number of I trials. We denote the resulting
measure as Ic, where the suffixed c indicates choice preference.
The mean choice for the corresponding early-trained outcome, E,
was 69.1%, and for the late-trained outcome, L, was 16.7%. (The
remaining 24.2% of responses were for the two remaining
choices.) The mean difference, Ic � 52.4%, was reliably greater
than zero, t(35) � 6.07, p � .001.

For a given participant, there were eight PE.PL test trials (one
half of which had PE on the left and the other half of which had PL
on the left; see Table 3). On these PE.PL trials, outcome L was
chosen 66.0% of the time, and outcome E was chosen 26.4% of the
time. The difference is computed for each participant and denoted
PLmPEc. The mean difference, PLmPEc � 39.6%, was reliably
greater than zero, t(35) � 4.92, p � .001.

In summary, both the I and PE.PL test items showed robust
choice preferences, indicating strong highlighting. In subsequent
correlational analyses, the Ic and PLmPEc values will be summed
to form an overall measure of a participant’s degree of highlighting
as indicated by choice.
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Eye Gaze

Having established that the choice data show substantial block-
ing and highlighting, we proceeded to examine the eye gaze data.

Blocking. The attention hypothesis suggests that attention to
the blocked cue B should decrease, whereas attention to the block-
ing cue A should increase. The control cues, C and D, should have
intermediate attention.

To test whether the blocked cue B gets less attention than the
control cues, we would like to know if gaze time to the control cue
D (or C) is greater than the blocked cue B. The corresponding
average difference is DmBg � [(DL � BR) � (DR � BL)]/2. This
value, DmBg, will be greater than zero if D is gazed at longer than
B. For each participant, the mean difference DL � BR was deter-
mined from eight trials: D1.B1, D1.B2, D2.B1, D2.B2, C1.B1,
C1.B2, C2.B1, and C2.B2. The mean difference BL � DR was
computed from the corresponding eight trials with the left–right
positions reversed. The average of those differences was then
recorded for each participant as his or her value of DmBg. There
was one outlier, leaving 40 participants included. The gaze time to
D was significantly longer than the gaze time to B, with the mean
DmBg � 46.2 ms, reliably greater than zero, t(39) � 3.01, p �
.005.

To test whether cue B gets less looking time than A, we
computed the average difference, AmBg � [(AL � BR) � (AR �
BL)]/2, in a manner analogous to DmBg. Because A.B was a
training case, the analysis was restricted to trials that had a correct
response (although the conclusion remains the same even if all
responses are included). There were three outliers. The gaze time
to A was longer than the gaze time to B, with the mean AmBg �
57.2 ms, reliably greater than zero, t(37) � 2.11, p � .041.

It was also found that looking time to A exceeded looking time
to C (or D). We defined AmCg � [(AL � CR) � (AR � CL)]/2
analogous to the previous scores. There were four outliers. The
gaze time to A was longer than the gaze time to C, with the mean
AmCg � 50.5 ms, reliably greater than zero, t(36) � 3.37, p �
.002.

In summary, the eye gaze data are consistent with the prediction
that one mechanism in associative blocking is learned attention:
People learn to attend to the blocking cue A and to ignore the
blocked cue B. In subsequent correlational analyses, the two gaze
differences that involve blocked cue B, namely DmBg and AmBg
will be summed to form an overall measure of a participant’s
degree of blocking as indicated by gaze.

Highlighting. For highlighting, the attention hypothesis sug-
gests that attention to PL should be stronger than to PE or I. If
people tend to look longer at what they are cognitively attending
to, then they should tend to look longer at PL than at PE.

The most straightforward way to test this prediction is by
considering looking times on PL.PE test trials. We defined
PLmPEg � [(PLL � PER) � (PLR � PEL)]/2 analogous to the
scores defined in the blocking analysis. Of 36 participants, there
were 2 outliers. The gaze time to PL was longer than the gaze time
to PE, with the mean PLmPEg � 58.4 ms, reliably greater than
zero, t(33) � 2.48, p � .019.

Gaze times to PL and PE can also be compared across PL.I and
PE.I trials. The prediction is that for PL.I and PE.I trials, that is,
when the perfect predictors are on the left, there should be longer
looking at PL than at PE. That should also be true when the perfect

predictors are on the right, that is, for I.PL and I.PE trials. We
combine those cases into an average difference, PL.ImPE.Ig �
([(PLL � IR) � (PEL � IR)] � [(PLR � IL) � (PER � IL)])/2.
Because these are cases of training items, only correct responses
were included in the analysis. There were no outliers but one
participant happened to have no correct responses for one of the
four summands, and was therefore excluded. The gaze time to PL
was longer than the gaze time to PE, with the mean PL.ImPE.Ig �
90.2 ms, reliably greater than zero, t(34) � 2.08, p � .045.

In summary, the eye gaze data support the claim that one
mechanism in highlighting is learned attention: People learn to
attend to the later-learned distinctive cue, PL. In subsequent cor-
relational analyses, the two gaze differences, PLmPEg and
PL.ImPE.Ig, will be summed to form an overall measure of a
participant’s degree of highlighting as indicated by gaze.

Individual Differences and Covariation

There is variation across individuals in the degree of choice or
gaze preference. One possibility is that this variation might be
entirely noise, with all individuals having an equal underlying
preference. On the other hand, the variation might be caused, to
some extent, by individual differences in the underlying prefer-
ence. In particular, some people might have more rapid or exten-
sive attentional shifting and learning than other people. This hy-
pothesis of individual differences in attentional shifting and
learning leads to two predictions: First, within a design (i.e.,
blocking or highlighting) people’s choice preferences and gaze
differences should covary. Second, across the highlighting and
blocking designs, people should covary in the magnitude of block-
ing and highlighting.

We pursue these predicted correlations in three steps. First we
show that within each type of experiment (blocking or highlight-
ing), choice preferences for different test cues did indeed correlate
with each other, and gaze preferences for different test cues also
correlated with each other. Second, within each type of experi-
ment, choice preferences were correlated with gaze preferences.
Third, across the experiments, degree of blocking was correlated
with degree of highlighting, for both choice and gaze measures.

Consider the blocking experiment. For the choice data, the
degree of control-cue preference on DB trials (DmBc) strongly
correlated with the degree of blocking-cue preference on AC trials
(AmCc), r � .522, t(39) � 3.82, p � .001. For the gaze data, the
correlation of AmBg with DmBg was r � .423, t(35) � 2.76, p �
.009. The high correlation of AmBg with DmBg across individuals
suggests that people who ignored B in one context also tended to
ignore B in the other context.

As an overarching measure of an individual’s blocking mani-
fested in choice preference, we computed the sum of DB and AC
preferences (DmBc � AmCc). As a summary measure of an
individual’s blocking manifested in gaze preference, we computed
the sum of AmBg and DmBg. These measures of blocking in choice
and blocking in gaze were strongly correlated, r � .481, t(35) �
3.24, p � .003. Thus, to the extent that gaze preference indicates
differential attention, and gaze preference is correlated with block-
ing as measured by choice, we have evidence that blocking in-
volves differential attention. Individuals who showed stronger
gaze preferences tended to show stronger blocking.
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Now consider the highlighting experiment. For the choice data,
the degree of L-response preference on PE.PL trials (PLmPEc)
strongly correlated with the degree of E-response preference on I
trials (Ic), r � .437, t(34) � 2.84, p � .008. This correlation is
predicted by attentional theory, because the stronger the associa-
tion is from I to E, the stronger should be the attentional shift away
from I during learning of I.PL. Conversely, the stronger the atten-
tional shift away from I during learning of I.PL, the better pre-
served is the association from I to E. For the gaze data, the gaze
differences PLmPEg and PL.ImPE.Ig also had a reliable positive
correlation, r � .369, t(31) � 2.21, p � .035.

As a summary measure of an individual’s highlighting mani-
fested in choice, we summed the PE.PL and I choice preference
magnitudes (PLmPEc � Ic). As a summary measure of an indi-
vidual’s highlighting manifested in gaze, we summed the PLmPEg
and PL.ImPE.Ig gaze differences. These two measures were pos-
itively correlated, as predicted, but the trend was only marginally
significant statistically, r � .314, t(31) � 1.84, p � .075 (two-
tailed). Thus, individuals who showed stronger highlighting in
their choice data tended to show stronger differential looking in
their eye gaze data. Again, to the extent that eye gaze indicates
attention, we have evidence that highlighting involves attention.

Finally, consider correlations across blocking and highlighting.
For the choice data, degree of blocking (i.e., DmBc � AmCc)
correlated with degree of highlighting (i.e., PLmPEc � Ic), r �
.382, t(32) � 2.34, p � .026. For the gaze data, degree of blocking
(i.e., AmBg � DmBg) correlated with degree of highlighting (i.e.,
PLmPEg � PL.ImPE.Ig), r � .385, t(27) � 2.17, p � .039. In
other words, people who showed stronger blocking also tended to
show stronger highlighting, as measured either by choice or by eye
gaze.

Modeling

The empirical results reported above are naturally predicted by
attentional learning theory, but until this point in this article the
theory has been only vaguely stated in informal language. A
rigorous pursuit of theoretical issues behooves us to ask two
further questions. First, can an attentional learning theory account
for the data when it is thoroughly specified in formal detail?
Second, are there other models that could account for the results?
The goal of this section is to answer those questions: Yes, a formal
attentional learning theory can account for the data. No, some
other likely models do not so readily account for the results.

A central theme of the modeling is that individual differences
can be captured by parameter value differences. That is, all indi-
viduals are assumed to be describable by the same underlying
representations and processing in the model; what varies between
individuals are the specific values of parameters that control their
specific quantitative behaviors. Thus, a successful model should
do three things: (a) generate the blocking and highlighting effects
in choice responses, (b) generate the blocking and highlighting
effects in eye gaze, and (c) generate the correlations of blocking
and highlighting, in choice and eye gaze, across individuals.

The EXIT Model

The EXIT model is one formal implementation of attentional
learning theory. It has been thoroughly detailed elsewhere (Krus-

chke, 2001a, 2001b) and therefore will be described only briefly
here. EXIT is a connectionist model that represents each cue as an
input node that has zero activation when the cue is absent and
positive activation when the cue is present. Each cue node is
multiplied by a nonnegative attention strength. By default, any
present cue gets some attention. The attention on the cues is
hypothesized to have limited capacity, and therefore the cues
compete for attention. The attentionally gated cue activations are
propagated across weighted connections to the output nodes, each
of which represents a possible response. The output activations are
mapped to choice probabilities such that the responses correspond-
ing to the more highly activated output nodes are given a higher
probability. In summary, when a stimulus is presented to the
network, the corresponding cue nodes are activated, attention is
distributed across the cues, the attentionally gated cue activations
are spread to the output nodes, and responses are made probabi-
listically, corresponding to the relative activations of the output
nodes.

When corrective feedback is supplied for a stimulus (just as
feedback is supplied to people in the learning experiments), the
network determines the discrepancy between the correct response
and the output activations that it generated. The goal of the
network is to reduce this error. The first action it takes to reduce
the error is a shift of attention across the input nodes. Attention is
shifted away from cues that cause error and toward cues that either
reduce error or at least do not increase error.

After attention has been shifted, the network then adjusts its
associative weights. One set of weights to be adjusted connects the
(attentionally gated) cues to the outputs. These weights are ad-
justed by simple error-reduction learning, as in standard back
propagation and the Rescorla–Wagner model. Weights from
attended-to cues are adjusted more than ignored cues, by virtue of
the attentional gating.

The network does not merely learn what overt response to make
for the cues. It also learns what covert attentional shift to make
across the cues. Recall that the network’s first reaction to error is
to shift attention away from error-causing cues. The network
should learn to reproduce this shifted pattern of attention in the
future, so that it does not generate the error again. In EXIT, this
learning of attentional distributions is accomplished by connec-
tions between the cues and the attentional gates. In fact, there is a
set of exemplar nodes that encode configurations of co-occurring
cues, and the exemplar nodes are connected to the attentional
gates. The exemplar-mediated mapping from cues to attention
gates allows the network to learn exemplar-specific distributions
of attention. For example, in the context of the highlighting ex-
periment, the network can learn to retain some attention on cue I
for exemplar I.PE, but the network can learn to shift attention away
from cue I for exemplar I.PL. Thus, after attention has shifted, the
associative weights from the exemplar nodes to the attention nodes
are adjusted, such that the shifted attentional distribution is better
evoked by that exemplar in the future.

Parameters related to attention. There are a number of pa-
rameters that govern the specific quantitative behavior of EXIT.
Three of these parameters are primarily concerned with attention.
One such attentional parameter is the attentional shifting rate (�g in
Kruschke, 2001a, Equation 7, p. 1400), which determines how
large a shift is made in response to error. A second attentional
parameter is the attentional learning rate (�x in Kruschke, 2001a,
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Equation 9, p. 1400). This parameter determines how large an
adjustment is made to the weights from exemplars to attention
nodes. A third attentional parameter is the exemplar node speci-
ficity (c in Kruschke, 2001a, Equation 3, p. 1399). This parameter
governs how much the learned attentional distribution generalizes
from one exemplar to another. The larger the specificity, the less
the learned attention generalizes. For example, when the network
learns for exemplar I.PL to shift attention toward PL, the speci-
ficity parameter determines how much that learning will generalize
to the test probe PE.PL. In the simulation results reported below,
the three attentional parameters will be yoked into a single factor
because their effects on the model’s behavior are tightly linked.
Enhancement of attentional influence is produced by increasing
the attentional shift rate, increasing the attentional learning rate or
decreasing the specificity of the learned attention, or both.

Parameters not directly related to attention. There are two
parameters that primarily govern the overall rate of learning asso-
ciations from cues to outcomes. One of these parameters is, of
course, the learning rate for the weights connecting cues to outputs
(�w in Kruschke, 2001a, Equation 8, p. 1400). The second param-
eter is the capacity (P in Kruschke, 2001a, Equation 5, p. 1400).
This parameter determines the total attentional weighting that can
be allocated across cues. Essentially, when the capacity is high,
there is more attentional multiplication overall, and overall learn-
ing is faster. The attentional capacity also has an influence on the
degree of competition between cues, but, at least in the present
experimental designs, the parameter appears to have an influence
very similar to the learning rate on the output weights.

Another parameter in EXIT determines the decisiveness of the
mapping from output activations to choice probabilities (� in
Kruschke, 2001a, Equation 2, p. 1399). Suppose that one output
node has activation of .7 and another output node has activation of
.3. A highly decisive network would assign a high probability to
the first response and a low probability to the second response. A
weakly decisive network, on the other hand, would assign less
extreme probabilities to the two responses. It is important to notice
that this decisiveness parameter can greatly influence the magni-
tude of choice probabilities generated by the network, but it has no
influence whatsoever on learning or attention shifting. The deci-
siveness parameter merely governs the back end of the network
that maps network behavior to human choice data. The decisive-
ness parameter does not directly influence the internal workings of
the network.

A final parameter is the context node salience (� in Kruschke,
2001a, Equations 3 and 4, p. 1399). In every stimulus, it is
assumed that there is a shared context cue (e.g., the response
prompt that occurs with every stimulus in the experiment). This
cue can be useful for learning differential base rates of outcomes,
but in the present experimental designs it is essentially inconse-
quential, and so the best fitting salience turns out to be close to
zero.

Fit of EXIT

The EXIT model was formulated to generate choice probabili-
ties. It was never explicitly meant to predict eye gaze. Neverthe-
less, we will cautiously make the assumption that attention allo-
cated to a cue generates eye gaze to that cue. Thus, to get a
rough-and-ready prediction of eye gaze from the model, we will

assume that the relative attention across cues predicts the relative
amount of eye gaze across cues.

In the Results section, we reported the absolute difference in
gaze durations. For example, in the blocking paradigm we defined
the difference between duration of gaze at the control cue, D, and
duration of gaze at the blocked cue, B, as DmBg � [(DL � BR) �
(DR � BL)]/2. We now simply convert that difference to a relative
measure, DmBg* � [(DL � BR)/(DL � BR) � (DR � BL)/(DR �
BL)]/2. The value of DmBg* can range from �1 to �1. If a person
gazes exclusively at D and never at B, then DmBg* � 1.0. If a
person gazes at D 55% of the time at at B 45% of the time, then
DmBg* � 0.10.

Across participants, the means of the relative gaze durations
were DmBg* � 0.0224, AmBg* � 0.0808, PLmPEg* � 0.0489,
and PL.ImPE.Ig* � 0.0511.2 We shall attempt to fit these empir-
ically measured values with the corresponding attentional differ-
ences in the model. For example, on a D.B test trial in the blocking
experiment, the model’s attention to cue D is D� and the attention
to cue B is B�, and the relative attention is DmBg* � (D� �
B�)/(D� � B�). That attention ratio in the model will be directly fit
to the corresponding empirical gaze ratio, DmBg*. Notice that
there are no additional parameters introduced to the model in
making this direct mapping from model attention ratios to gaze
duration ratios. This mapping is, no doubt, incomplete and quan-
titatively lacking, but it turns out to be good enough for reasonable
fits.

Other mappings from model attention to gaze ratios are possible.
For example, when the stimuli appear, there might be an initial
duration in which both cues are looked at and encoded (because
their positions are random) regardless of which cue will subse-
quently in the trial get more sustained gaze because of learned
relevance. In this case, the gaze ratios might instead correspond to
(D� � B�)/(2E � D� � B�), where E reflects the time for initially
encoding a cue. Other measures of relative gaze might also be
used, such as the overall priority of looking at one cue or the other
within the sequence of fixations. Such a measure might be espe-
cially appropriate if there were a process model describing eye
movements as a function of learned relevance of cues. After we
completed our modeling, we noted that Rehder and Hoffman (in
press) reported a linear correspondence between model attention
values and gaze preferences. Merely for simplicity, however, we
will identify model attention ratio with empirical gaze ratio.

We will fit the EXIT model to overall mean data from all of the
participants and then explore how the model behavior changes
when parameter values deviate from the best fitting values. The
idea is that the parameter values that fit the overall mean might
describe an average participant, and variations from those central
parameter values would yield predictions of variations across
individuals. In particular, we are specifically interested in knowing
whether variations in attentional parameters generate correlated
variations in blocking and highlighting, as predicted by the infor-
mal theory that motivated the experiments and as suggested by the
data analyses reported above.

2 Using the proportional measure of gaze time, all of the results
remained statistically reliable except a subset of those involving
PL.ImPE.Ig*, which had a relatively large variance. All of the trends
remained the same as those reported for the difference measure.
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For the blocking design (see Table 2), the model was trained on
four blocks of Phase 1 and four blocks of Phase 2, because these
amounts of training approximate the mean blocks to criterion
observed in human participants (3.78 and 4.02 blocks, respec-
tively). The model was trained on six blocks of Phase 1 in
highlighting (see Table 3), reflecting the fact that human partici-
pants took more than five blocks on average to reach criterion
(mean of 5.24 blocks). Stable model predictions were achieved by
running 20 simulated participants, each with a different random
ordering of training trials within blocks.

A single set of parameter values was used for all simulated
participants and simultaneously for both blocking and highlighting
designs. (The model can fit the data even better when the blocking
and highlighting experiments are fit separately.) Predictions of
choice and gaze were computed for each simulated participant, and
the mean model prediction was compared against the mean human
prediction using root mean squared deviation (RMSD) as a mea-
sure of discrepancy. In more detail, the model attempted to fit 12
means from the test phases of the two experiments. These data
were the accuracies on the training items A.B, C.D, I.PE, and I.PL,
the choice differences DmBc, AmCc, Ic, and PLmPEc, and the
proportional gaze differences DmBg*, AmBg*, I.PLmI.PEg*, and
PLmPEg*. The parameter space was searched until a best fit was
found. We used a simplex hill-climbing method, starting from
several different initial parameter values. Unfortunately, the pa-
rameter space seemed to be crenulated with many local minima, so
the fit we report might not be the best possible.

The predicted means from the best fitting parameter values are
shown in Figure 2, along with model predictions when the atten-
tional parameters are varied above and below the best fitting
values (BFV). The x-axis of Figure 2 indicates the magnitude of
the attentional parameters, as a proportion of the BFV. When this
proportion is 1.0, the parameters are set at the BFV; thus, the
model predictions plotted over the x-axis value of 1 are the best
fitting predictions. Additional discussion of the x-axis appears
below.

The upper panels of Figure 2 plot predicted response probability
or difference of response probability. For example, the curve
labeled A.B in the upper left panel indicates the predicted accuracy
on item A.B in the test phase. The curve labeled AmCc indicates
the predicted value of the choice difference AmCc (defined in the
Results section). The lower panels plot the attention ratios in the
model, which are identified with gaze ratios in the data. For
example, the curve labeled AmBg* in the lower left panel indicates
the model’s predicted attention ratio when item A.B is presented in
the test phase.

The EXIT model attained a good quantitative fit. (The best
fitting RMSD was 0.032, for the following parameter values:
attentional shift rate 0.278, gain weight learning rate 0.0418,
exemplar specificity 0.300, output weight learning rate 1.00, at-
tention capacity 1.03, choice decisiveness 3.57, and context node
salience 0.000.) The model shows high accuracy on the training
items (curves A.B and C.D in the upper left panel of Figure 2, and
curves I.PE and I.PL in the upper right panel of Figure 2), strong
blocking in choice (curves DmBc and AmCc well above zero in
the upper left panel of Figure 2), sizable highlighting in choice
(curves PLmPEc and Ic well above zero in the upper right panel of
Figure 2), notable gaze differences in blocking (curves DmBg*
and AmBg* above zero in the lower left panel of Figure 2), and

significant gaze differences in highlighting (curves PLmPEg* and
I.PLmI.PEg* above zero in the lower right panel of Figure 2).

Figure 2 also displays how the predictions of EXIT change
when the attentional parameters are changed away from their BFV.
The motivation for this exploration is the hypothesis that different
individuals have different attentional characteristics. Some indi-
viduals have attentional shifting, learning, and generalization that
is higher than average, whereas others have attentional shifting,
learning, and generalization that is lower than average. Attentional
theory suggests that people with higher attention shifting, learning,
and generalization should exhibit larger blocking and highlighting
in choices and in gaze. The main point of Figure 2 is to illustrate
that EXIT produces exactly these trends as a function of attention.

The x-axis of Figure 2 indicates the values of the three atten-
tional parameters as proportions of the BFV. For example, when
the proportion is x � 2.0, then the attentional shifting and learning
rates are set to twice their BFV, and when the proportion is x �
0.0, then the attentional shifting and learning rates are set to zero.
The direction of the specificity is reversed on the x-axis, because
increasing x represents increasing attentional generalization (i.e.,
decreasing attentional specificity). Thus, for the specificity, the
proportional multiplier on the specificity is actually 2 � x. For
example, when x � 2.0, the specificity is set to zero, and when x �
0.0, the specificity is set to twice its BFV.

The mutually ascending curves in the four panels of Figure 2
show clearly that as the attentional parameters increase, the mag-

Figure 2. Predictions of the EXIT model for the blocking experiment
(left panels) and highlighting experiment (right panels), when fit simulta-
neously to data from both. The values on the x-axes denote the values of
the three attentionally related parameters in EXIT as a proportion of the
best fitting values (BFV). The upper panels plot choice proportions (for
A.B, C.D, I.PE, and I.PL) or differences of choice proportions (for AmCc,
DmBc, Ic, and PLmPEc). The lower panels plot attention ratios in the
model, which were fit to human gaze ratios. Param. � parameter.
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nitudes of blocking and highlighting increase, and the gaze differ-
ences also increase. Although not displayed here, these trends also
occur when each of the three attentional parameters is adjusted
separately, with all other parameters held constant. The three
parameters are adjusted together here because they all express the
strength of the attentional system. The three parameters do have
identifiable effects on behavior, however. Attentional shifting, not
necessarily accompanied by attentional learning (or generalization
of that learning), is critical to generate highlighting per se. Learn-
ing the shift is helpful for accelerating performance on the I.PL
training trials (Kruschke, 2003b). Generalization of the learned
attentional shifts is important for producing attentional (i.e., gaze)
differences for novel test stimuli, such as PL.PE in highlighting
and B.D in blocking.

The trends shown in Figure 2 naturally imply the correlations
across participants that were observed in the human data. Imagine
simulated participants that vary individually in the strength of their
attentional systems. A simulated individual with attentional pa-
rameters set at x � 0.8 will have smaller-than-average blocking,
highlighting, and gaze differences. A simulated individual with
attentional parameters set at x � 1.2 will have larger-than-average
blocking, highlighting, and gaze differences. Therefore, across
simulated participants who vary in attentional strength, the mag-
nitudes of blocking, highlighting, and gaze differences will be
positively correlated. Notice that this is true even when the other
parameters (the decisiveness, the associative learning rate, the
capacity, and the context salience) are held constant.

Variations in single other parameters do not give rise to the
correlations observed in the data. When the decisiveness is varied,
there are large changes in blocking and highlighting choice pro-
portions, but zero changes in eye gaze because the decisiveness
parameter has no influence on attention or learning. The context
salience is virtually zero in the best fits to the present data, and so
even doubling it causes essentially no changes in the predictions.
Changing the output weight learning rate (within �0.5 of the BFV)
produces negative correlations of blocking (DmBc and AmCc)
with gaze (DmBg* and AmBg*). The same is true of changing the
capacity parameter. It is conceivable that some sort of correlated
variation among the other parameters could generate the types of
correlation seen in human subjects, but if it exists it is not obvious
to us.

Figure 2 also graphically illustrates that attentional shifting is
critical in EXIT for producing highlighting, but not for producing
blocking. When there is no attentional shifting (i.e., when x � 0.0),
then the gaze ratio drops to zero because attention is never shifted
from its initial uniform distribution. Highlighting also drops to
zero (i.e., the Ic and PLmPEc curves are essentially at zero).3 The
Rescorla–Wagner model is a special case of EXIT in which there
is zero attention shifting (and very large attention capacity), and
thus it cannot exhibit highlighting.

Blocking persists, however, when x � 0.0 (i.e., the DmBc and
AmCc curves are well above zero). Blocking occurs when x � 0.0
because the associative weights are adjusted by error, just as in the
classic Rescorla–Wagner model. Attentional shifting in EXIT
merely enhances blocking, but attention shifting is not the sole
cause of blocking. We speculate that this property of attention in
EXIT might mimic behavior across species or developmentally:
Blocking might occur without highlighting in individuals who
have small or no attentional shifting, such as in human youngsters

or in some nonhuman species (Fagot, Kruschke, Depy, & Vauclair,
1998). Although attentional learning is not needed to account for
blocking per se, attentional learning is needed to account for
retarded subsequent learning about a previously blocked cue
(Kruschke & Blair, 2000; Kruschke, 2001b, 2005).

Other Models

It is not our purpose here to claim that no other model can
account for our data. We examine a few alternative models that are
candidates because of their application to blocking, highlighting,
or gaze by previous authors. These models in their published forms
cannot account for our results, but modified versions might.

The Rescorla–Wagner model. The Rescorla–Wagner model is
the classic model of blocking. It is a special case of EXIT when
EXIT’s attentional parameters are set to zero (and its capacity
parameter is set to a very large value). As pointed out above in
conjunction with Figure 2, the Rescorla–Wagner model cannot
account for highlighting. Perhaps some modified version that
encodes absent-but-expected cues as negative values (e.g., Mark-
man, 1989; Tassoni, 1995; Van Hamme & Wasserman, 1994)
could account for highlighting. Such an approach would have to
specify how the model learns to expect cues and would need to
specify how associative weights are mapped to eye gaze.

The eliminative inference model (ELMO). An alternative
model that has been claimed to account for highlighting is ELMO,
proposed by Juslin et al. (2001). As described in the beginning of
this article, ELMO fails to account for some effects observed in
highlighting experiments (Kruschke, 2001a). For the moment, we
will overlook those shortcomings and investigate whether ELMO
might address the results of the present article. Unfortunately, we
find that ELMO cannot generate a blocking effect. In the blocking
procedure (see Table 1), cases of A.B3X and C.D3Y occur
equally often, and therefore would be equally well learned by
ELMO. In the test phase, when probe B.D is presented, the
A.B3X and C.D3Y rules would be equally evoked, and so the
X and Y responses would have equal probability.

The RULEX model. The RULEX model (Nosofsky et al.,
1994) was considered by Rehder and Hoffman (2005) in their
study of gaze and category learning. The RULEX model is there-
fore also a candidate for the present research on gaze and asso-
ciative learning. To our knowledge, RULEX has never been ap-
plied to blocking or highlighting. It is far beyond the scope of this
article to embark on a lengthy computer simulation study of
RULEX; we limit ourselves here to intuitive simulation and ten-
tative conclusions.

RULEX posits that people try to explain category labels using
rules that are as simple as possible. Rules that involve single

3 The Ic and PLmPEc curves are not exactly at zero when x � 0 because
the output-weight learning rate is not high enough in these simulations for
the later I.PL training to completely balance the earlier I.PE training.
Additional simulations confirm that when the output weight learning rate is
increased, then the Ic and PLmPEc curves go to exactly zero when x � 0.
Notice that the output-weight learning rate is not limited at a value of 1.0.
It is easy to prove that in a linear associator, the error can be reduced to
zero in one trial if the learning rate is set at 1/¥i �i

2ai
2, where �i is the

attention on cue i and ai is the activation of cue i. For the other parameter
values set at their BFV, this implies that the output learning rate has a
maximum well over 2.0 for I.PE and I.PL stimuli.
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features or dimensions are simplest and therefore tested first. Next
simplest, usually, are single-feature rules with a small number of
exceptions specified by a small number of additional features.
Conjunctive rules involving as few features as possible are usually
considered next. Among the free parameters of RULEX is a
branching parameter that specifies the probability of testing im-
perfect single-feature rules before testing conjunctive rules.
RULEX retains a rule as long as it makes enough correct predic-
tions (according to a criterion that is a parameter of the model),
otherwise the rule is jettisoned and a different rule is tested. In this
way RULEX is error-driven, as is the Rescorla–Wagner model and
the EXIT model. Because RULEX encodes only a small number of
features whenever possible, it is also attentionally selective, like
EXIT.

When applied to blocking (see Table 1), RULEX would learn in
Phase 1 the rule A3X. In Phase 2, that rule would correctly
predict the outcome of cases A.B3X, and therefore would be
retained, and no new rule involving B would be learned. When
learning cases of C.D3Y, RULEX would learn one of the single-
feature rules, C3Y or D3Y, but presumably not both. Finally,
when confronted with test case B.D, RULEX would do one of two
things. If it had learned D3Y in Phase 2, then this rule would be
matched and RULEX would respond with Y. If it had learned
C3Y in Phase 2, then RULEX would have no known rules
involving B or D, and it would simply choose randomly from the
response options. Analogous reasoning applies to test case A.C.
Thus, on average, RULEX would exhibit blocking in its choice
predictions.

Rehder and Hoffman (2005) hypothesized that if RULEX had
eyes, it would look at the features in its learned rules more than at
features that were not in its learned rules, because only the features
in its learned rules are informative for making responses. From this
hypothesis mapping covert rules to overt gaze, it follows that
RULEX would also show blocking in gaze (i.e., look more on
average at control cues C and D than at blocked cue B, and look
more at the blocking cue A than at the control cues).

When applied to highlighting (see Table 1), the predictions of
RULEX are more complicated. In the early training phase,
RULEX would learn from training case I.PE3E either the rule
I3E or the rule PE3E. Suppose RULEX learned PE3E. In the
later learning phase, RULEX might test the rule I3L but find it
imperfect, and therefore settle on PL3L. With these rules (PE3E
and PL3L), RULEX would not show highlighting. Suppose,
however, that RULEX learned I3E in the early training phase. In
the later training phase, RULEX could jettison that now-imperfect
early rule and learn the rules PE3E and PL3L. Again in this case
it would not show highlighting. Alternatively, with a probability
governed by a free parameter, RULEX could retain the early rule
I3E and learn I.PL3L as an exception. In this case, RULEX
would show highlighting. In summary, RULEX predicts that at
least one half of the participants would learn the rules PE3E and
PL3L, and therefore would not show highlighting, but at least
some of the remaining half of the participants would learn the rules
I3E and I.PL3L, and therefore would exhibit highlighting.

Thus, RULEX could qualitatively produce the basic blocking
and highlighting effects. Unfortunately, RULEX might suffer
when trying to simultaneously fit data from other probe items. For
example, in highlighting, the test phase can include the case of PE
by itself. People respond E in this case at very high rates (e.g.,

92.5% in Experiment 2 of Kruschke, 1996). For RULEX to exhibit
strong highlighting, a sizable proportion of its simulated partici-
pants do not know anything about PE, and therefore RULEX
would probably not show high response rates for PE.

It is also not clear how RULEX would show correlations in
blocking and highlighting. Whereas the degree of highlighting
would be governed by the degree to which people look for excep-
tions to rules (rather than jettisoning imperfect rules), it is not clear
how that would govern the degree of blocking. Indeed, the block-
ing procedure is so simple that it is unclear how RULEX would
show any variance at all, except through its response-error param-
eter, which governs the extent to which individuals make a ran-
dom, unintended response.

Despite these potential problems, it is likely that a reasonable
variant of RULEX could account for the blocking and highlighting
data we have presented in this article. If so, the essential explan-
atory principles in RULEX are fundamentally similar to those in
EXIT: Cues are selectively attended to, and the selection of cues is
driven by error reduction.

Variants of ALCOVE. The ALCOVE model (Kruschke, 1992)
learns to differentially attend to psychological stimulus dimensions
depending on their relevance to the category label, and the rapid
attention shifts ‘n’ learning (RASHNL) model (Kruschke & Jo-
hansen, 1999) is an extension of ALCOVE that incorporates rapid
shifts of attention (in contradistinction to the presumably more
gradual shifts in ALCOVE). Both models assume that what is
attended to is dimensions, as opposed to values within dimensions,
whereas the CORNER model (Kalish & Kruschke, 2000) also
selectively attends to values within dimensions. None of these
models is specifically designed to address traditional blocking or
highlighting procedures, however, which rely on the presence or
absence of cues (cf. Kalish, 2001). Verguts, Ameel, and Storms
(2004) incorporated into ALCOVE a different similarity function
that can accommodate present and absent features, in a model they
called additive ALCOVE (ADDCOVE). The ADDCOVE model
has no attention-shifting mechanism, however, and therefore can-
not account for highlighting. Perhaps future work could combine
the similarity function of ADDCOVE with the rapid shifts of
attention in RASHNL or EXIT to address the results reported in
the present article.

Summary and Discussion

Previous research using choice data alone has suggested that
highlighting and blocking involve learned shifts of cognitive at-
tention. If people tend to look at what they are cognitively attend-
ing to, then they should tend to look more at highlighted cues and
less at blocked cues. These predictions were confirmed.

To the extent that attentional shifting and learning vary across
individuals and are stable individual differences, there should be
covariation of attention-dependent behaviors across individuals. If
attentional shifting and learning is an important factor in blocking,
and if eye gaze is linked with cognitive attention, then individuals
who show stronger blocking in choice should show stronger dif-
ferences in eye gaze. This predicted correlation was confirmed.
Analogously, if attentional shifting and learning is an important
factor in highlighting, and if eye gaze is linked with cognitive
attention, then individuals who show stronger highlighting in
choice should show stronger differences in eye gaze. This pre-
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dicted correlation was also confirmed (although marginal two-
tailed). If attentional shifting and learning is an important factor in
both blocking and highlighting, and if eye gaze is linked with
cognitive attention, then individuals who show larger gaze differ-
ences in blocking should tend to show larger gaze differences in
highlighting. This predicted correlation was confirmed. Finally, if
attentional shifting and learning is an important factor in both
blocking and highlighting, then individuals who show stronger
blocking (measured by choice) should tend to show stronger
highlighting (measured by choice). This predicted correlation was
also confirmed. Note that this last prediction does not depend on
eye gaze.

A formal model of attentional shifting and learning was fit
simultaneously to choice and gaze data from blocking and high-
lighting experiments. The model could also naturally account for
correlations of blocking, highlighting, and gaze by varying the
attentional parameters across simulated participants. Other param-
eters in the model, such as choice decisiveness or learning rate, do
not easily show such correlations. Other candidate models from the
literature cannot account for the findings, but perhaps those models
could be modified in future research.

As a whole, this research adds significant new evidence to the
argument that highlighting and blocking involve learned attention.
Not only do people tend to look less at blocked cues and more at
highlighted cues, but covariation across people suggests enduring
individual differences in attentional shifting and learning.

Attention in EXIT and Other Formalizations

Attention means different things to different researchers, de-
pending in part on what is conceived to be the recipient of
attention. Attention can be allocated to spatial locations, to objects,
to features or dimensions (either spatially localized or spread
across space and time), to response options, to outcomes, or to
discrepancies between actual and predicted outcomes. Attention
also means different things depending on its role in processing.
Attention can refer to an enhanced effect on immediate generation
of a response, or it can refer to enhanced learning that is only
manifested in later behavior. In this section we briefly discuss what
sort of attention is formalized in the EXIT model.

In EXIT (Kruschke, 2001a, 2001b), attention is formalized as
multipliers on cue activations. The multipliers affect both imme-
diate response generation and subsequent learning about the cues.
Some previous theories have separated those functions; for exam-
ple, Mackintosh (1975) emphasized attention to a cue as its learn-
ing rate or associability, distinct from its immediate impact on
response generation. The associability of a cue increased if it was
predictive of the outcome, and decreased otherwise. Kruschke
(2001b) described formal relationships between Mackintosh’s ap-
proach and the EXIT model. Pearce and Hall (1980) proposed an
alternative perspective in which the associability of a cue is de-
termined as the error it caused on its previous presentation. This
approach implies that after sufficient learning, when there is little
error, the associability of a cue is low. The different approaches
address different sets of data, and a unified approach has yet to
emerge. Pearce and Bouton (2001) provided a nice review of these
issues. In EXIT, predictions of differential gaze come from the
notion of attention as a multiplier for immediate response gener-
ation. It is not clear how the Mackintosh or Pearce and Hall

approaches might be modified to address eye gaze (and, note that
those approaches were designed with animal, not human, learning
in mind).

The EXIT model attends to cues. In general, cues can be
(circularly) defined as any psychological entity to which attention
can be allocated. A cue can be a concept, a word, a color value
(e.g., red), color as a dimension (as distinct from, say, the dimen-
sion of shape), objects, locations, and so on. Cues can be spatio-
temporally localized or distributed. More specifically, the EXIT
model attends to present and absent features (e.g., the word ocean,
which can be present or absent). Other models, such as RASHNL
(Kruschke & Johansen, 1999) and its predecessor ALCOVE
(Kruschke, 1992), attend to dimensions (e.g., the dimensions of
color vs. shape). The CORNER model (Kalish & Kruschke, 2000)
extends the representation of EXIT to include continuous dimen-
sions, so that the model simultaneously attends to dimensions and
values within dimensions. Our aim here is simply to point out that
these distinctions exist and to be clear that connections between
these varieties of attention are not a foregone conclusion. In the
present research, we relied on a hypothesized correspondence
between (a) cognitive attention to a concept and (b) perceptual
attention to the word designating that concept (although the loca-
tion of the word varied across trials and people could not use
location as an indicator of relevance, unlike the experiments of
Rehder & Hoffman, 2005, in press). This correspondence does not
preserve some aspects of attention in the two realms. For example,
cognitive attention might be distributed across several concepts
simultaneously, but eye gaze is directed at one location at a time.

Logan (2002) presented a unified view of attention to dimen-
sions, response options, and objects, which he called the instance
theory of attention and memory (ITAM; see also Logan, 2004). In
ITAM, selective attention to an item in space is conceptualized as
the same process as selective attention to a categorical response.
The two selective processes take place simultaneously and in a
unified formalization. This is unlike the approach taken by EXIT,
in which competition between response options is distinct from
competition between cues (or objects). ITAM learns by storing
copies of whatever instances it has attended to, but it does not have
a mechanism for shifting or learning attention analogous to EXIT.
Perhaps an even broader unification of these attentional theories
will emerge soon.
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