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1  C H A P T E R 

1   ERP Components: Th e Ups and Downs 
of Brainwave Recordings    

   Emily   S.     Kappenman  and    Steven   J.     Luck      

       Th e goal of this chapter is to provide a framework 
for understanding, interpreting, and using event-
related potential (ERP) components in the broad 
domain of mind, brain, and behavior sciences. 
Researchers in other areas such as political science, 
economics, law, and medicine may also fi nd this 
overview useful as a guide to a broad understanding 
of ERP components. Event-related potentials have 
been used for decades to uncover aspects of the sen-
sory, cognitive, and motor processes that underlie 
human thought and behavior. Th e excellent tempo-
ral resolution of the technique provides a narration 
of neural processes as they unfold millisecond by 
millisecond, adding whole pages to the story of the 
mind that behavioral and imaging techniques leave 
blank. However, the ERP technique is not without 
limitations. As refl ected in the title of this chapter, 
there are both advantages and limitations of the 
ERP technique, and we will explore both the ups 
and the downs of ERPs in this chapter. 

 Th e fi rst section of the chapter is aimed at defi n-
ing the term  ERP component , describing the neural 
events that give rise to ERP components and explain-
ing how multiple components sum together to 
form the observed ERP waveform. Th e next section 
describes the problems involved in isolating indi-
vidual ERP components from the observed wave-
form, which is often much more diffi  cult than 
researchers realize. Th is is followed by a discussion of 
the challenges involved in linking an ERP compo-
nent with a specifi c neural or psychological process 
and then using this link to answer broader questions 
about the mind and brain. Th ese challenges may 
seem insurmountable, but researchers have devel-
oped experimental and analytic approaches that can 
overcome them in many cases. Th e key to using 
ERPs eff ectively is to understand what questions can 
be answered by ERP experiments and how the limi-
tations of the technique can be avoided. Indeed, 
despite its limitations, the ERP technique is often 

 Abstract 

 This chapter provides a framework for understanding, interpreting, and using event-related potential 
(ERP) components in the broad domain of mind, brain, and behavior sciences. The fi rst section defi nes 
the term  ERP component , describing the neural events that give rise to ERP components and explaining 
how multiple components sum together to form the observed ERP waveform. The next section 
describes the problems involved in isolating individual ERP components from the observed waveform, 
which is often much more diffi cult than researchers realize. This is followed by a discussion of the 
challenges involved in linking an ERP component with a specifi c neural or psychological process 
and then using this link to answer broader questions about the mind and brain. The chapter concludes 
with a discussion of what types of questions are most easily answered with ERPs and the approaches 
that have proven effective in overcoming the challenges of the technique.  

  Keywords :  event-related potential ,  ERP component ,  peaks ,  waves ,  reverse inference       

01-Luck-II-01.indd   301-Luck-II-01.indd   3 5/19/2011   5:38:41 PM5/19/2011   5:38:41 PM

OUP UNCORRECTED PROOF – FIRST-PROOF, 19/05/2011, GLYPH



4 erp components

105

104

103

102

101

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1 the best one for answering certain types of questions. 
Th e chapter therefore ends with a discussion of what 
types of questions are most easily answered with 
ERPs and the approaches that have proven eff ective 
in overcoming the challenges of the technique. 

 Although a number of the issues we address are 
discussed elsewhere in the literature (e.g., see Luck, 
  2005  ), this chapter provides a comprehensive and 
concise overview of the nature and use of ERP com-
ponents from a vantage point that is readily accessi-
ble to researchers from a wide range of backgrounds. 
Readers who have no familiarity at all with the ERP 
technique may wish to fi rst read the more basic 
introduction provided by Luck (in press).     

   Th e Nature of ERP Components      
   What Is an ERP Component?   
 Th e ERP waveform appears on the scalp as a series 
of positive and negative peaks   1    that vary in polarity, 
amplitude, and duration as the waveform unfolds 
over time. However, the actual waveform is continu-
ous, with no sudden transitions between one peak 
and the next, and division of the ERP waveform 
into discrete peaks is somewhat arbitrary. Indeed, 
this peak-centered view of the ERP waveform may 
refl ect an intrinsic predisposition of the human 
visual system to use  minima of curvature  (places 
where orientation reverses direction) to defi ne the 
parts of complex real-world objects (Hoff man & 
Richards,   1984  ). Although the peaks are visually 
salient, there is no a priori reason to believe that 
each peak refl ects a specifi c brain process. However, 
early ERP researchers tended to make this assump-
tion, and this has had a major infl uence on the ter-
minology and analytical techniques used in ERP 
research. Sophisticated ERP researchers have recog-
nized for decades that the peaks are somewhat arbi-
trary, and they make a distinction between  peaks  
(local voltage maxima) and  components  (discrete 
intracranial sources of voltage that refl ect specifi c 
neurocognitive processes, defi ned further below). 
Nonetheless, it is still common for researchers to 
assume that a peak in the observed ERP waveform is 
equal (or approximately equal) to an underlying 
ERP component. Perhaps the most important goal 
of this chapter will be to encourage readers to look 
beyond the visually salient peaks to the underlying 
components; it is the underlying components rather 
than the peaks that directly refl ect the neural and 
psychological processes we wish to study. 

 To clarify the relationships among peaks and 
components, it is important to begin with some 
clear defi nitions. We can defi ne the observed ERP 

waveform as  a depiction of the changes in scalp-
recorded voltage over time that refl ect the sensory, cogni-
tive, aff ective, and motor processes elicited by a stimulus . 
We can defi ne an ERP peak as  a reliable local positive 
or negative maximum in the observed ERP waveform  
(the term  reliable  allows us to disregard local maxima 
that result from high-frequency noise). 

 Th e term  ERP component  is more challenging to 
defi ne. Th is term gets bandied about in the litera-
ture very frequently, but it is rarely defi ned or con-
ceptualized beyond the peaks in the observed ERP 
waveform. In some sense, the term  ERP component  
is analogous to the concept of attention: Just 
as “everyone knows what attention is” (James,   1890  , 
p. 381), everyone knows what an ERP component 
is (at least everyone in the ERP world). Moreover, 
despite the fact that attention researchers all believe 
they know what attention is, they vary substantially 
in how they use the term  attention  (Luck & Vecera, 
  2002  ), and ERP researchers similarly vary in how 
they use the term  component . Th erefore, just as it 
is diffi  cult to elicit agreement on the term  attention  
in a room full of attention experts, it is no easy task 
to fi nd a simple, concise, and widely accepted defi -
nition of the term  ERP component . Furthermore, 
there is an important distinction between how these 
terms have evolved: although attention researchers 
frequently debate the fundamental nature of atten-
tion, ERP researchers rarely discuss the nature of 
ERP components. 

 Th ere are, of course, counterexamples to this 
sweeping generalization about the nature of ERP 
components. For example, Manny Donchin has 
written extensively and explicitly throughout his 
career about ERP components and their existence 
beyond the peaks in the observed ERP waveform 
(e.g., see Donchin & Heffl  ey,   1978  ). More recently, 
Luck (  2005  ) provided a comprehensive discussion 
of the distinction between components and peaks. 
Th e concept of a component has also been discussed 
in the context of mathematical techniques for isolat-
ing components, such as principal component anal-
ysis (Donchin & Heffl  ey,   1978  ) and independent 
component analysis (see Chapter 3, this volume). 
However, this important issue is often ignored in the 
ERP literature and warrants continued discussion. 

 In a general sense, we can defi ne the term  ERP 
component  as  a scalp-recorded voltage change that 
refl ects a specifi c neural or psychological process . 
Although most researchers understand and use 
words such as  refl ect  and  process , such terms them-
selves refer to loose concepts without clear defi ni-
tions. Consequently, it will be necessary to fi ll out 
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1 the details of this defi nition over the course of this 
chapter. However, this concise defi nition does pro-
vide a reasonable approximation of the way the term 
 ERP component  is usually used by ERP researchers. 
We will illustrate the relationship between the ERP 
waveform and the underlying ERP components in 
the following sections, fi rst discussing the neural 
events that give rise to the observed ERP waveform 
and the process of isolating the ERP waveform from 
other electrical activity. We will then illustrate the 
diff erences between the peaks in the ERP waveform 
and the underlying ERP components through the 
use of simulated waveforms.     

   Where Do ERP Components Come From?   
 Event-related potentials are voltage fl uctuations in 
the ongoing electroencephalogram (EEG) that are 
time-locked to an event, such as the onset of a stim-
ulus or the execution of a manual response. Electro-
encephalographic research began long before 
laboratory computers were available, and early 
researchers were able to observe only large ERPs that 
were visible on single trials (Davis,   1939  ) prior to 
the advent of computer averaging in the early 1960s 
(Galambos & Sheatz,   1962  ). However, most ERPs 
are rather small in comparison with the ongoing 
EEG activity and usually become visible only when 
multiple EEG epochs are combined together to form 
an average ERP waveform. Th is averaging process 
proved extremely benefi cial to the fi eld of ERPs and 
was the fi rst occurrence in which signal averaging 
“revealed the existence of novel, previously unknown, 
neural processes” (Donchin et al.,   1978  , p. 349). 

 To understand the intricate mixture of signals we 
record on the surface of the scalp, we must fi rst 
understand where and how these signals arise neu-
rally. Although it is diffi  cult to know with certainty 
how scalp-recorded voltage changes originate at the 
neural level, the following represents the best esti-
mate based on our understanding of both biophys-
ics and the properties of neural communication. 

 Th e changes in scalp-recorded voltage that give 
rise to the ERP waveform refl ect the summation of 
postsynaptic potentials (PSPs) that occur simultane-
ously in large numbers of cortical pyramidal cells 
that are orientated in a similar manner with respect 
to the scalp (see Luck,   2005  , chap. 1). Th ese PSPs 
are a result of changes in electrical potential that 
occur when ion channels open or close in response 
to neurotransmitters binding with receptors on the 
postsynaptic cell membrane, which leads to the fl ow 
of ions into or out of the cell. When a PSP occurs at 
one end of a cortical pyramidal neuron, the result 

can be considered an electrical  dipole , with positive 
on one end and negative on the other end. When 
PSPs occur simultaneously in many neurons that are 
spatially aligned, such that their dipoles point in the 
same direction, the dipoles sum together to form 
a large dipole known as an  equivalent current dipole . 
If a suffi  ciently large number of spatially aligned 
neurons are simultaneously active, the equivalent 
current dipole is large enough to be reliably recorded 
on the surface of the scalp. Th is requires the simul-
taneous activation of thousands of neurons, due in 
part to the many layers of tissue that separate the 
scalp electrodes from the neurons. Th is is most likely 
to occur in groups of pyramidal cells in cerebral 
cortex, which are lined up together perpendicularly 
with respect to the cortical surface and are often 
active in unison. In other words, ERPs are almost 
always the result of PSPs in large groups of cortical 
pyramidal cells. It should be noted that, except in 
a few unusual cases, scalp ERPs do not refl ect action 
potentials. Th us, ERPs represent the inputs to a 
group of neurons rather than the outputs of those 
neurons. Also, due to the necessity for such large 
numbers of spatially aligned neurons to be simulta-
neously active in scalp recordings, much of the 
neural activity in the brain that gives rise to cogni-
tion and behavior is not visible to an electrode 
placed on the scalp.   2    

 For a given equivalent current dipole or neural 
generator source, the specifi c distribution of posi-
tive and negative voltages recorded on the scalp is 
determined by the position of the dipole in the head 
and its orientation with respect to the scalp (although 
it should be noted that the choice of reference elec-
trode can also play a factor in the voltage distribu-
tion; see Luck,   2005  , chap. 3). In other words, each 
equivalent current dipole will produce both positive 
and negative voltages on the head, with a band 
of zero separating the positive and negative voltage 
halves. Th is voltage reversal on the opposite side 
of the equivalent current dipole is often not very 
noticeable, because electrodes are not generally 
placed over the entire head, but the reversal is easily 
observed for some components (such as the N170; 
see Chapter 5, this volume). Th e positive or nega-
tive polarity of an ERP component at a given elec-
trode site is related to several factors, including the 
orientation of the equivalent current dipole with 
respect to the electrode, and it is not usually possible 
to link the polarity to the type of neural processing 
(such as inhibition versus excitation). For a more 
detailed discussion of the factors that aff ect the 
polarity of an ERP, see Luck (  2005  , chap. 1). 
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1  Because electrical potential travels close to the 
speed of light, the transmission through the brain, 
meninges, skull, and scalp is essentially instanta-
neous. In other words, the voltages measured on the 
scalp at a particular time refl ect synaptic activity at 
that particular instant, with no measurable delay. 
Th us, ERPs provide a direct and instantaneous mil-
lisecond-resolution measure of activity related to 
neurotransmission.     

   Summation of Components in the 
Observed ERP Waveform   
 It is important to note that although the ERP wave-
form at a particular instant refl ects synaptic activity 
at that moment, it does not refl ect  only  the neural 
activity that  began  at that particular instant. 
Specifi cally, the PSPs that give rise to ERPs last on 
the order of tens or even hundreds of milliseconds.   3    
Th erefore, as new mental processes are unfolding, 
the previous neural activations persist. In other 
words, multiple groups of neurons are active simul-
taneously in diff erent regions in the brain. If we 
think of this neural activity in terms of dipoles, this 
means that multiple equivalent current dipoles are 
active simultaneously. In fact, source localization 
studies have shown that as many as 10 separate 
equivalent current dipoles may be active at a given 
time (Di Russo et al.,   2002  ; Picton et al.,   1999  ). 
If we return to our conception of ERP components, 
in which we defi ne an ERP component as a signa-
ture of an individual neural process, each equivalent 
current dipole is essentially a separate ERP compo-
nent. In other words, when we say that multiple 
equivalent current dipoles are active simultaneously, 
this really means that multiple ERP components are 
generated simultaneously. 

 In some cases, neurons engaged in one mental 
process may be distributed in diff erent areas of the 
brain, such as the simultaneous processing of a 
single auditory signal in both the left and right tem-
poral lobes. Th is would essentially lead to two 
equivalent current dipoles. Should we consider these 
two dipoles as two separate ERP components or as 
a single ERP component? Th ey are typically treated 
as parts of a single component under the assump-
tion that both hemispheres are engaging in essen-
tially the same mental process. However, this is a 
fi ne detail of the defi nition of an ERP component, 
with little practical signifi cance for the use of ERP 
components. Furthermore, resolution of this issue 
would require a precise defi nition of what is meant 
by  mental process  in terms of the behavior of neu-
rons, both individually and as a group. Th at is, how 

do we determine whether the same mental process 
is occurring in two individual neurons, and on a 
larger scale, in groups of neurons? Th is is a complex 
issue that remains to be resolved by future research. 

 Th e combination of multiple ERP components 
on the scalp leads to the  superposition problem , which 
is depicted in Figure   1.1  . When multiple ERP com-
ponents are simultaneously active, the recorded 
voltage at the scalp is based on the sum of the volt-
ages from all the individual components. Th is is a 
simple additive process. Th at is, if you knew the 
true waveform for each individual component, you 
could add all the component waveforms together to 
get the ERP waveform at each electrode site (scaling 
each component by a weighting factor that refl ects 
the contribution of the component to the voltage 
measured at a specifi c electrode site). Unfortunately, 
the true waveform for each component is not known 
in real recordings, and it is quite diffi  cult to reduce 
the sum of the components in the observed data to 
the individual components. However, understand-
ing with simulated data how the voltage recorded at 
a particular electrode site refl ects the various inter-
nal generator sources can help us understand the 
properties and intricacies of the ERP signals.  

 Th e propagation of voltage from a single genera-
tor site to a particular electrode site depends on the 
position and orientation of the ERP generator 
source with respect to the electrode, along with the 
conductance of the brain, skull, and scalp. Th is can 
be quantifi ed with a weighting factor: Th e contribu-
tion of a given generator to the voltage recorded 
from a given electrode site is simply the waveform at 
the generator multiplied by the weighting factor 
(see Figure   1.1  ). Th ere will be a separate weighting 
factor specifying the relationship between each elec-
trode site and each internal neural generator source. 
Together, the set of weighting values between each 
source and each electrode site provides a  mixing 
matrix  that defi nes how the diff erent components 
mix together at each site. Some mathematical tech-
niques for recovering the underlying components 
work by computing an  unmixing matrix  that reverses 
this process, passing the observed data through the 
unmixing matrix to compute the component wave-
forms (see Chapter 3, this volume). 

 When multiple ERP components are simultane-
ously generated in diff erent brain areas, the voltages 
from these components sum together. Th e voltage 
recorded at each site will therefore be the sum of each 
of the internally generated ERP components, with 
each scaled by the weight between that electrode 
site and each of the generator locations. Th e value at 
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1 a given electrode site at a particular moment in time 
is equivalent to the magnitude of each component at 
that time, scaled by the appropriate weighting factor 
and then summed together. Consequently, the ERP 
waveform at each electrode site contains information 
about all of the neural generators in the brain, not 
just the generator sources located close to the elec-
trode (although nearby sources will usually have a 
greater weight). 

 Th e inability to relate the ERP waveform at a 
particular electrode site to the neural tissue directly 
below the electrode site is made even more severe by 
the properties of the head. Specifi cally, as electrical 
activity travels from the brain to the surface of the 
scalp, the activity must pass through layers of skull 
and scalp. Although these constituents of the head 
are suffi  ciently conductive to allow the electrical 
activity generated in the brain to appear on the sur-
face of the head, they are not perfect conductors, 

and the high resistance of the skull relative to the 
low resistance of the underlying brain and overlying 
scalp causes the voltage to spread laterally as it trav-
els. Th e signals are therefore blurred together by the 
head, which further distorts the relationship between 
the voltage at a particular electrode site and the 
cortex directly under that site. 

 Of course, anyone who has seen the ERP wave-
forms from multiple electrode sites knows that dif-
ferences exist in the shape and size of the ERP 
waveform across electrode sites. In other words, 
although the waveform at each electrode site refl ects 
neural signals from all over the brain, the summated 
signals are not identical at each site. It is tempting to 
use the scalp distribution information to estimate 
the location of the neural generator source by, for 
example, determining at which electrode site the 
signal is largest. However, the superposition of mul-
tiple components and the blurring of the voltages 

     Fig. 1.1.  Relation between the underlying component waveforms and the observed scalp waveforms. In this example, three 
components are present (C1, C2, C3), each of which has a waveform (shown at the bottom left) and a generator location 
(represented by the arrows in the head). Th e contribution of each component waveform to the observed waveform at a given 
electrode site is determined by a weighting factor that refl ects the location and orientation of the generator relative to that electrode, 
along with the conductivity of the tissues that form the head. Th e observed waveform at a given electrode site (shown at the bottom 
right) is equal to the sum of each of the component waveforms, multiplied by the weighting factor between each component and 
that electrode site. Th e weights are indicated by the  w ’s on the arrows between the component waveforms and the observed 
waveforms (e.g.,  w  2,3  represents the weighting factor between component 2 and electrode 3).    

01-Luck-II-01.indd   701-Luck-II-01.indd   7 5/19/2011   5:38:42 PM5/19/2011   5:38:42 PM

OUP UNCORRECTED PROOF – FIRST-PROOF, 19/05/2011, GLYPH



8 erp components

105

104

103

102

101

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1 across the head make it impossible to determine the 
locations of the generator sources solely from the 
observed waveforms. In fact, an infi nite number of 
internal generator confi gurations could produce any 
observed distribution of ERP activity over the scalp 
(see Luck,   2005  , chap. 7). Th us, there is no tech-
nique that can determine, with certainty, the loca-
tions of the sources and the waveform at each source 
without bringing in diffi  cult-to-verify assumptions 
or other sources of evidence. 

 To summarize, the ERP waveform refl ects ongo-
ing synaptic activity related to mental processing 
as it unfolds millisecond by millisecond. However, 
because scalp-recorded signals require the simulta-
neous activation of large groups of spatially similar 
oriented neurons, only a portion of the neural activ-
ity that occurs in response to a stimulus will be 
measurable from electrodes on the surface of the 
scalp. Furthermore, the ERP waveform at a given 
electrode site refl ects the contribution of many 
simultaneously active ERP components that overlap 
in time, and it is diffi  cult to mathematically unmix 
the observed waveforms and determine the original 
component waveforms.     

   Other Approaches to Defi ning 
ERP Components   
 In this section, we will consider the relationship 
between the defi nition of the term  ERP component  
that we have proposed in this chapter and the way 
that components are defi ned by four other app-
roaches:  source localization ,  principal component 
analysis  (PCA; see Donchin & Heffl  ey,   1978  ),  inde-
pendent component analysis  (ICA; see Chapter 3, this 
volume), and  time-frequency analysis  (see Chapter 2, 
this volume). We will concentrate on the spatial 
variants of PCA and ICA, in which components are 
defi ned on the basis of scalp distribution informa-
tion (see Spencer et al.,   2001  , for a discussion of 
temporal and spatiotemporal PCA). 

 We will begin by considering the source localiza-
tion, ICA, and PCA approaches. In these three 
approaches, a component is defi ned solely by its 
scalp distribution, which is assumed to remain 
stable over the course of a single experimental ses-
sion (this is a reasonable assumption given that 
brain geometry is unlikely to undergo major changes 
within a few hours). As mentioned in the previous 
section, these techniques provide an  unmixing 
matrix  that refl ects the estimated scalp distributions 
of the individual components; the waveform for 
each component is computed by passing the 
observed waveforms through this matrix. Th at is, 

rather than passing the component waveforms 
through the weights shown in Figure   1.1   to obtain 
the observed waveforms at each electrode (moving 
from left to right in the fi gure), these techniques pass 
the waveforms observed at each electrode site through 
an unmixing matrix to obtain the component wave-
forms (moving from right to left). Unfortunately, 
there is no unique solution to the problem of deter-
mining the underlying component waveforms from 
the observed scalp waveforms, and these three tech-
niques use diff erent assumptions to pick a single 
solution to this problem (without any guarantee 
that the correct solution will be found). 

 In source localization techniques, a component 
is equivalent to a neural generator source. Th ese 
techniques use biophysical assumptions about the 
fl ow of current through the conductive tissues of 
the head to defi ne the scalp distribution of each 
component (and thereby compute a unique unmix-
ing matrix). To obtain a unique solution, these tech-
niques must also rely on additional assumptions, 
such as a specifi c number of discrete dipoles or max-
imal smoothness in the distribution of current fl ow 
over the cortical surface. Th at is, these techniques 
fi nd the set of single-component scalp distributions 
that can sum together to provide the best fi t to the 
observed scalp distribution as it varies over time 
while also being consistent with a variety of assump-
tions (for a review and critique, see Luck,   2005  , 
chap. 7). Th us, source localization techniques defi ne 
a component as activity arising from a region of 
cortex, which is similar to our defi nition of an ERP 
component as refl ecting a specifi c brain process (on 
the assumption that most brain processes occur in 
discrete areas   4   ). However, our defi nition of the term 
 ERP component  goes further, because more than one 
brain process may occur in a given region of cortex. 
Moreover, source localization approaches diff er con-
siderably from the traditional approach to defi ning 
components in the procedures used to discover 
and defi ne individual components. Whereas source 
localization techniques use a variety of assumptions 
to select a set of scalp distributions that together 
provide a quantitative account of the data from 
a given experiment, traditional approaches to defi n-
ing components are based on using experimental 
manipulations to test hypotheses about the link 
between a voltage defl ection and an underlying 
neural or psychological process (as discussed further 
in a later section). 

 Principal component analysis and ICA make 
no biophysical assumptions, but instead use the sta-
tistical properties of the data to derive the scalp 
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1 distributions of the components. Th at is, the obser-
ved scalp distribution changes from moment to 
moment and from condition to condition as the 
underlying components wax and wane, and the sta-
tistical relationships between the values observed at 
the diff erent electrode sites are used to determine 
the scalp distributions of the individual compo-
nents. In PCA, for example, two electrode sites will 
tend to contribute strongly to the same component 
if they tend to covary in voltage. Principal compo-
nent analysis is designed to fi nd an unmixing matrix 
in which a small number of components — each 
with its own scalp distribution — can sum together 
to explain most of the variations in the observed 
scalp distribution. It reduces a large and complex set 
of observed scalp distributions (for each time point, 
condition, etc.) to a small number of component 
scalp distributions. In contrast, ICA is designed to 
fi nd an unmixing matrix that maximizes the inde-
pendence of each component so that every indivi-
dual component represents the largest possible 
amount of information. Th e scalp distributions of 
the components in ICA may be correlated with each 
other (as would be expected for two independent 
but nearby neural sources), but the strength of acti-
vation of each component varies independently of 
the strength of the other components over time 
points and over conditions. Whereas PCA attempts 
to lump as much information as possible into a small 
number of components, ICA attempts to split apart 
the information into diff erent components (for a 
detailed comparison, see Chapter 3, this volume). 

 Because it is a “lumping” technique, spatial PCA 
by itself is unlikely to produce components that are 
related to individual neural and psychological pro-
cesses. However, the essence of ICA corresponds 
well with a reasonable assumption about these pro-
cesses. Specifi cally, for something to count as a 
unique process, it must be dissociable from other 
processes. Th is is largely identical to saying that 
the process must sometimes vary independently of 
other processes, and this is exactly the type of inde-
pendence that ICA uses to defi ne components. 
Th us, although ICA uses a mathematical approach 
rather than a hypothesis-testing approach to derive 
the components, it shares much with the defi nition 
of the term  ERP component  that we have proposed 
in this chapter. Moreover, the components isolated 
by ICA often have a scalp distribution that matches 
what would be expected for a single dipole, even 
though the technique makes no biophysical assump-
tions about dipoles (see, e.g., Figure 3.9 in Chap-
ter   3, this volume). 

 Th ere are, however, some practical problems 
associated with linking ICA components to ERP 
components as we have defi ned them here. First, 
ICA is applied to single-subject data, and it can be 
diffi  cult to determine the correspondence between 
the ICA components obtained for the diff erent sub-
jects. Th e same problem arises when comparing 
components across experiments. Second, the ICA 
computational approach requires that the number 
of ICA components is always equal to the number 
of electrodes, and this means that multiple true 
components may be lumped together into a single 
ICA component or that a single true component 
may be distributed across multiple ICA compo-
nents. It remains to be seen how well the traditional 
approach and the ICA approach to defi ning and 
isolating components can be combined. 

 Th e time-frequency approach is very diff erent 
from the source localization, ICA, and PCA app-
roaches (although it can be combined with them). 
In the time-frequency approach, the EEG is decom-
posed into the sum of a set of oscillations, and the 
power in each frequency band is estimated at each 
moment in time (with varying degrees of temporal 
precision; see Chapter 2, this volume, for details). 
Th e results of this approach can be related in con-
ventional ERP components in two main ways. 

 First, if the oscillations vary randomly in phase 
from trial to trial, they will ordinarily disappear 
when the single-trial EEG epochs are averaged 
together; oscillations of this sort are completely 
invisible in conventional averaged ERP waveforms 
(for an exception, see Mazaheri & Jensen,   2008  ). 
In such cases, oscillations within a given frequency 
band are often considered as being analogous to 
ERP components, refl ecting a specifi c neural or psy-
chological process. However, many diff erent pro-
cesses might lead to oscillations in a given frequency 
band, so it is problematic to assume that power in 
a given frequency band in one experiment refl ects 
the same process refl ected by power in that same 
frequency band in another experiment (e.g., theta-
band activity in one experiment may refl ect very 
diff erent processes than theta-band activity in a dif-
ferent experiment). Assuming that a given band 
refl ects a specifi c process would be analogous to 
assuming that any positive defl ection in the P3 
latency range refl ects a single process. 

 A second possibility is that a stimulus might 
perturb the phase of an ongoing oscillation, causing 
the phase to become consistent across trials during 
the period immediately after the stimulus. In such 
cases, the phase consistency across trials will allow 
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1 the oscillation to survive the averaging process 
(see Figure 2.2 in Chapter 2, this volume). When 
this happens, a component in an averaged ERP may 
actually consist of a portion of an ongoing oscilla-
tion rather than refl ecting a discrete voltage defl ec-
tion that is elicited by the stimulus.      

   Challenges in Isolating ERP Components   
 We have defi ned the term  ERP component  as scalp-
recorded neural activity that is associated with a par-
ticular neural or psychological process. It is the 
nature of the underlying process that we are seeking 
to uncover with ERP research; however, as discussed 
in the preceding section, the ERP waveform that we 
can record contains a mixture of many diff erent 
ERP components. Deconstructing the ERP wave-
form into its ERP components is no trivial task. 
An infi nite number of combinations of underlying 
components could sum together to give rise to a 
given ERP waveform. Th is section is devoted to 
illustrating the diffi  culty in assessing changes in 
a component from the observable ERP waveform. 
To illustrate these points, we will use simulated data 
for which the underlying ERP components are 
known and modifi able. Th is section is primarily 
aimed at pointing out the limitations of ERP com-
ponent research. Although this section may make 
ERP research seem dismal, you should not become 
disheartened with ERPs. Th e fi nal section of this 
chapter will provide some tools that have been suc-
cessful for using ERPs to answer questions about 
the mind, brain, and behavior.    

   ERP Peaks  ≠  ERP Components   
 As discussed earlier, the ERP waveform looks like 
a succession of distinct and easily separable peaks, 
but these peaks do not map onto distinct ERP com-
ponents in a simple one-to-one manner. Th e neural 
activation associated with each distinct mental pro-
cess persists for tens or hundreds of milliseconds, 
which means that the ERP signature from one pro-
cess will overlap with the ERP signature for subse-
quent processes either in part or in whole. Even if 
these neural processes occur in separate parts of the 
brain, the ERP waveform at a given electrode site 
will be the weighted sum of all of the underlying 
components. In other words, each peak in the wave-
form is usually determined by more than one, and 
often several, separate ERP components. 

 Much ERP research has centered on evaluating 
diff erences in the size or timing of an ERP compo-
nent across conditions or across groups of subjects. 
Such changes can speak volumes about diff erences in 

neural processing. However, the problem of overlap-
ping components makes it diffi  cult to ascertain 
whether a change in a peak in the observed ERP 
waveform is due to a change in one component, 
a change in a diff erent component, or changes in a 
combination of multiple components. In the lan-
guage literature, for example, it is not always clear 
whether a putative increase in N400 amplitude might 
actually be a decrease in P3 amplitude, and a great 
deal of work was needed to determine that the P600 
component elicited by syntactic anomalies was diff er-
ent from the P3 wave (see Chapter 15, this volume). 

 Figure   1.2   illustrates some of the measurement 
problems that arise due to the overlap of ERP com-
ponents. In this simulated example, the observed 
waveform shown in Figure   1.2A   is the sum of the 
three underlying components shown in Figure   1.2B  . 
In other words, Figure   1.2B   is the observed ERP 
waveform and Figure   1.2A   shows the underlying 
components (which we cannot observe directly in 
real experiments). Looking at the observed wave-
form, the ERP appears to consist of a positive com-
ponent from 0 to 90 ms, a negative component 
from 90 to 180 ms, and a positive component from 
180 to 450 ms. However, the underlying compo-
nents are much longer in duration, with the fi rst 
positive component active from 0 to 200 ms, the 
negative component active from 50 to 325 ms, and 
the second positive component active from 100 to 
450 ms. Th us, one cannot easily determine the dura-
tion of an underlying component from the duration 
of the peak in the observed waveform. Th e diffi  culty 
of assessing component duration from the ERP 
waveform is a problem in experimental contexts 
as well, particularly when a smaller component is 
preceded or followed by a much larger component. 
For example, it is diffi  cult to assess the duration 
of the N2 component when it is followed closely by 
the much larger P3 component. Although it is often 
the case that evaluating the length of a peak in the 
waveform minimizes the apparent duration of a 
component, the waveform can also make a compo-
nent seem longer in duration than it is in actuality. 
For example, the late positive potential (LPP) in the 
emotion literature appears as a single component 
that is hundreds of milliseconds in duration; how-
ever, the LPP may actually be composed of several 
distinct shorter-duration components (see Chap-
ter 16, this volume). Th erefore, the duration of 
peaks in the ERP waveform is often quite diff erent 
from the duration of the underlying components.  

 Changes in the timing or size of components 
across experimental conditions or groups of subjects 
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1 can also be diffi  cult to assess from the ERP wave-
form. Figure   1.2C   shows the eff ect of an experimen-
tal manipulation that decreases the amplitude of the 
negative component. In addition to decreasing 
the measured amplitude of the negative peak in the 
observed waveform, this manipulation greatly 
increases the amplitude of the second positive peak 
(even though the manipulation did not change the 
amplitude of the second positive component). Th is 
is one clear example of how changes in the ampli-
tude of one component (the negative component) 
can result in an amplitude change in a subsequent 
part of the waveform (the second positive peak). 
Based on a superfi cial evaluation of the waveform, 
these changes would lead to the erroneous conclu-
sion that the diff erence between conditions was the 
result of modulations in two underlying ERP com-
ponents; however, in this case, both peak modula-
tions were caused by a change in a single underlying 
ERP component. Th erefore, researchers may draw 
substantially incorrect conclusions if they assume 
that a change in the size of a peak refl ects a change 
in the size of a particular component. 

 Similarly, Figure   1.2D   shows the eff ect of a 
manipulation that increases the amplitude of the 
fi rst positive component. In addition to increasing 
the measured amplitude of the fi rst positive peak 
in the observed waveform, this manipulation 
decreased the measured amplitude of the negative 
peak. Th e manipulation of the amplitude of the fi rst 

positive component also increased the apparent 
latency of the negative peak, even though no latency 
shift occurred for any of the underlying compo-
nents. In other words, a change in the amplitude 
of one component can in some cases masquerade as 
a shift in the latency of a diff erent component. 
Th erefore, it is often diffi  cult to determine whether 
a specifi c type of modulation of the ERP waveform 
is related to the same type of change in the underly-
ing components. In other words, measured shifts in 
peak latency can sometimes be caused merely by 
changes in component amplitude, and measured 
changes in peak amplitude can sometimes result 
from shifts in component latency. 

 Although we have shown a few cases of the dif-
fi culty in linking changes in the ERP waveform 
with changes in particular underlying ERP compo-
nents, this is by no means an exhaustive description 
of the ways in which changes in underlying compo-
nents can aff ect the observed ERP waveform. We 
encourage anyone interested in exploring these 
eff ects to create simulated data and see how modu-
lations in the underlying components aff ect various 
parts of the ERP waveform (this is easy to do in a 
spreadsheet program, such as Excel). Furthermore, 
it should be noted that the simulation shown in 
Figure   1.2   may actually underestimate the severity 
of the problem of measuring amplitudes and laten-
cies from the ERP waveform, because modeling 
eff orts suggest that 6–10 generators may be active 

     Fig. 1.2.  Example of how the peaks in an observed waveform can misrepresent the underlying components. Panel A shows the 
observed waveform, and Panel B shows the underlying components that sum together to produce the observed waveform. 
Note that Peak 1 is much earlier than the peak of component C1, and the shape of Peak 2 is very diff erent from the shape 
of component C2. Panel C shows the original waveform overlaid with a waveform in which the amplitude of component C2 has 
been decreased. Note that this change in C2 causes an increase in the amplitude of Peak 3, even though component C3 does not 
diff er between these waveforms. Panel D shows the original waveform overlaid with a waveform in which the amplitude of 
component C1 has been increased. Note that this changes the amplitude and latency of Peak 2, even though component C2 does 
not diff er between these waveforms.    
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1 within a given 150 ms period (Di Russo et al.,   2002  ; 
Picton et al.,   1999  ), in contrast to the 3 neural gen-
erators used in the simulation shown in Figure   1.2  . 
On the other hand, considerable information about 
the underlying component structure can often be 
obtained by examining the waveforms from multi-
ple electrode sites, because diff erent components 
will be weighted diff erently at each electrode.     

   Variability in ERPs   
 Amplitudes and latencies are almost always mea-
sured from the average of multiple EEG segments 
but separately for each individual subject. In other 
words, all of the trials in a condition are averaged 
together for a given subject, and the amplitude and 
latency measures are computed for each subject 
from this average waveform. Each subject then con-
tributes a value to the statistical test for diff erences 
across conditions or groups, with the variance across 
subjects contributing to the ability to detect a sig-
nifi cant experimental eff ect. Th is process of signal 
averaging is incredibly important and integral to the 
utilization of ERPs; averaging across multiple EEG 
epochs reveals ERPs that are not visible on single 
trials, and data from multiple subjects provide a 
measure of variance that is important to assessing 
statistically signifi cant changes. However, it is 
important to understand distortions that can be 
introduced by the averaging process. 

 Th e process of averaging across multiple trials to 
form an average ERP waveform relies on several 
assumptions, the most important of which is that 
the timing of the signal of interest is the same on 

each trial. However, this is often not the case. 
Specifi cally, just as the behavioral reaction time 
varies substantially from trial to trial in an experi-
ment, the timing of the underlying neural processes 
that give rise to the ERP components may also vary 
from trial to trial. Th e variability in the timing of 
a component across trials is known as  latency jitter , 
and it can actually be quite problematic to the inter-
pretation of an average waveform. When latency 
jitter is present for a component, as depicted in 
Figure   1.3  , the average ERP waveform will contain 
a “smeared-out” version of the component. Specif-
ically, the average ERP waveform will refl ect both 
the  earliest  onset and  latest  off set times of the com-
ponent, as opposed to refl ecting the  average  onset 
and off set times. In addition, latency jitter can 
greatly reduce the measured peak amplitude (dis-
cussed more fully later in the chapter). Furthermore, 
although this variation in timing across trials is 
informative about the nature of the process refl ected 
by the component, it can make the comparison of 
the size and timing of a component across condi-
tions or across groups of subjects more diffi  cult. 
Specifi cally, greater variability in the timing of a 
component across conditions may be incorrectly 
interpreted as a change in the size or duration of the 
component. For example, a comparison of the two 
conditions depicted in  Figures  1.3A   and   1.3B   might 
lead to the erroneous conclusion of a smaller com-
ponent in condition A than in condition B, even 
though the only diff erence between the conditions 
lies in the variability in the component timing across 
trials. Th erefore, understanding how latency jitter 

     Fig. 1.3.  Example of how diff erences in latency jitter (the amount of variability in component latency across trials) infl uence the 
average waveform. Th e green waveforms are the single-trial data, and the red waveforms are the averages across trials. Th e jitter 
in single-trial latency is greater in (A) than in (B), leading to a broader averaged waveform with a lower peak amplitude in A than 
in (B). Th at is, even though the amplitude of the single-trial waveforms is equivalent in (A) and (B), the peak amplitude of the 
averages diff ers between (A) and (B). In addition, the onset time and off set time of each average refl ect the earliest onset times and 
latest off set times of the single trials rather than the average of the single-trial onset and off set times.    
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1 can impact the average waveform can be useful in 
interpreting experimental eff ects.  

 Measures of amplitude and latency are almost 
always taken from individual subject waveforms. 
By contrast, most ERP papers show the grand aver-
age ERP waveform across subjects, as opposed to 
each of the individual subject waveforms. Th erefore, 
the characterizations we can make of the compo-
nents in a particular experiment are generally taken 
from an average representation of all the subject 
waveforms in the study. It is tempting to think that 
the grand average ERP waveform would refl ect the 
average of all of the individual subject waveforms 
that make up the average; however, just as the aver-
age of multiple EEG segments within a subject 
refl ects the range of the epochs, a grand average 
across subjects actually refl ects the  earliest  onset and 
 latest  off set times and not the average of the onsets 
and off sets of the components. In other words, if 

there is substantial variability in the timing of the 
components across subjects, the grand average ERP 
will refl ect that variability. 

 One of the most salient factors when measuring 
the amplitudes and latencies of ERP components 
from the individual subject waveforms is the quite 
substantial variation in shape across waveforms. For 
example, consider the waveforms in Figure   1.4A  . 
Th e bottom waveform is the grand average across 
subjects, and the other waveforms refl ect 8 ran-
domly selected subjects from the 20 individuals 
who contributed to the grand average. Th e high-
lighted portion of the fi gure corresponds to the time 
period one might select to measure the P2 wave, 
because it covers almost the entire duration of the 
wave in the grand average. However, the activity 
within this time window varies considerably across 
the individual subject waveforms. For some of the 
subjects, the fi rst positive wave peaks prior to the 

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

Subject 6

Subject 7

Subject 8

Average
−200 200 400 600 800

Overall sum
points downward

Overall sum
points upward

BA

+5mV

−5mV

     Fig. 1.4.  (A) Single-subject ERP waveforms from 8 of 20 subjects in an oddball paradigm, along with the grand average of all 
20 subjects (data from the study of Luck et al.,   2009  ). (B) Example of how small diff erences between two subjects in the position of 
an active area of cortex within a sulcus could lead to opposite polarities at the electrode shown on the surface of the head. Each arrow 
represents the equivalent current dipole in a small patch of cortex, with positive at the arrowhead end and negative at the opposite 
end. Many of these dipoles will cancel each other, and the surface voltage will refl ect the activity in the noncanceling dipoles.    
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1 beginning of the window (e.g., subjects 3, 4, and 7), 
and one subject’s waveform is entirely negative 
during this window (subject 3).  

 Th e between-subject variations in the ERP 
waveform can be quite disconcerting when measur-
ing a component from the single-subject waveforms. 
It is very unlikely that the same process reaches 
maximal activity at 145 ms in one healthy adult 
(e.g., subject 7) and at 220 ms in another (e.g., sub-
ject 6), so it does not seem appropriate to use a 
window that is broad enough to include peaks at 
such diff erent latencies. And it is hard to understand 
how the negative defl ection exhibited by subject 3 
could represent the same functional brain activity as 
the positive defl ection exhibited by subjects 1 and 2 
in this same interval. However, as discussed above, 
peaks in the ERP waveform do not correspond 
directly to the underlying components. So, how 
problematic are these individual-subject waveform 
diff erences? 

 To understand whether the diff erences among 
individual-subject waveforms adversely aff ect our 
characterization of the components, we must fi rst 
understand the source of the diff erences. For later 
periods of the waveform that refl ect higher cogni-
tive processes, diff erences in size and shape may 
refl ect diff erences in the strategies subjects engage in 
during cognitive processing. Th erefore, individual 
diff erences in the size and shape of the waveform 
may refl ect actual processing diff erences. However, 
for the sensory processing that occurs within ~200 
ms after the onset of the stimulus, it is unlikely that 
diff erences in waveform size and shape refl ect diff er-
ences in strategy or processing, at least in healthy 
subjects. Instead, the waveform diff erences most 
likely arise from diff erences across subjects in non-
functional “nuisance” factors such as skull thickness 
and cortical folding patterns. 

 Just as fi ngerprints are unique to each individual, 
so is the intricate pattern of sulci and gyri in the 
human brain. Such changes in folding pattern could 
easily lead to diff erences in ERP waveforms across 
subjects like those illustrated in Figure   1.4  A. For 
example, Figure   1.4  B shows how a relatively small 
diff erence between two subjects in the location 
of an active strip of cortex within a sulcus could lead 
to opposite polarities for those two subjects at a 
given electrode site. More of the active region is 
on one side of the sulcus for one subject and more is 
on the opposite side of the sulcus for the other sub-
ject, leading to an overall equivalent current dipole 
pointing upward for one subject and pointing 
downward for the other subject. Consequently, the 

overall activity at a given scalp electrode will be pos-
itive for one subject and negative for the other. 

 Although this variability can be problematic for 
studies designed to assess individual diff erences, 
there is considerable similarity in the grand average 
ERP waveforms from diff erent experiments that uti-
lize similar tasks. Th is gives us some confi dence that 
reliable conclusions can be drawn by comparing rea-
sonably sized groups of subjects, even if the indi-
vidual subjects within a group vary considerably in 
waveform shape. For example, there is great similar-
ity across P3 oddball studies in grand average ERP 
waveforms, despite the fact that these waveforms are 
made up of diff erent underlying individual-subject 
waveforms. Consider the ERP waveforms in Fig-
ure   1.5  . Th e top left panel shows all 20 individual-
subject waveforms from a P3 oddball task, subdivided 
at random into two separate groups of 10 subjects 
each. Th ere is enormous variability bet ween subjects 
in the amplitude and shape of the ERP waveform, 
with much larger P3 waves in some subjects than in 
others. However, as can be seen at the bottom of 
Figure   1.5  , the grand averages across these two sub-
groups of subjects are quite similar in amplitude, 
timing, and shape, despite the large diff erences in 
the underlying individual-subject ERP waveforms 
that make up those grand averages. In other words, 
the individual-subject diff erences do not alter the 
overall experimental eff ect when the sample size is 
suffi  cient. However, it is important to remember 
that some measurement techniques may be more 
aff ected by this between-subjects variance than other 
techniques. We will address the issue of measure-
ment later in the chapter. It should also be noted 
that statistical techniques can be applied that allow 
measurements to be made from grand averages 
rather than from single-subject waveforms, capital-
izing on the stability of the grand averages (Kiesel 
et al.,   2008  ; Miller et al.,   1998 ,  2009  ).  

       How to Identify and Defi ne an 
ERP Component   
 Given how diffi  cult it is to isolate a specifi c ERP 
component from the ERP waveform, you may be 
wondering how we even know that a specifi c ERP 
component exists. For example, how do we know 
that there is an N1 wave, a P3 wave, an N400, and 
so on? Of course, there is a voltage defl ection in 
a broad time range corresponding to each of these 
components, but as we have already seen, there 
are usually multiple components active simultane-
ously in a given time range. So, how do we know 
that a voltage defl ection is caused by a specifi c ERP 
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1 component in one study, and how do we know that 
that same ERP component is active in subsequent 
studies? In other words, how do we  operationally 
identify and defi ne  an ERP component? 

 Event-related potential components are often 
defi ned in terms of a combination of polarity, latency, 
and scalp distribution. Th is method of defi ning ERP 
components is evident from the common naming 
scheme in which ERP components are named in 
terms of polarity and latency (given either in milli-
seconds or as the ordinal position in the waveform). 
However, as we will see below, these dimensions 
describe the observed peaks and do not provide 
a stable and precise means of defi ning the underlying 
ERP components. Th at is, the factors of polarity, 
timing, and scalp distribution can vary from context 
to context, rendering them unstable representations 
of a component. We will explore each of these factors 
in turn and will end with some strategies for defi ning 
and isolating ERP components. 

 As discussed above, the timing of a neural pro-
cess can vary across trials, subjects, and experiments. 

And because an ERP component is a scalp-recorded 
signature of a neural process, it stands to reason that 
the timing of an ERP component will vary across 
these same contexts. We can see timing variability 
quite clearly in studies of the P3 component, which 
can vary across conditions by hundreds of millisec-
onds, sometimes occurring before the manual 
response and sometimes appearing after the response. 
Th is is one reason that the moniker P300 is often 
shortened to P3, to eliminate the association with 
the time value of 300 ms. Although the timing of 
most ERP components is not nearly as variable as 
that of the P3, timing variability does occur for all 
ERP components. Visual sensory components, for 
example, increase in latency as stimulus brightness 
decreases for the simple reason that the amount 
of time required for information to reach cortex 
increases as brightness decreases. In addition, most 
components change in latency across early develop-
ment (see Chapter 17, this volume) and across aging 
(see Chapter 18, this volume). Examining the varia-
tion in time windows over which the components 

     Fig. 1.5.  Example of the similarity of grand average waveforms despite substantial diff erences among the single-subject waveforms. 
Waveforms from 20 subjects in an oddball experiment were randomly divided into two groups of 10. Th e single-subject waveforms 
for each group are shown at the top left and top right. Note the large variability in the amplitude and shape of the waveforms. 
Th e grand averages of these two subgroups of 10 subjects are shown at the bottom. Despite the large diff erences among the 
individual subjects, the grand averages from the two subgroups are quite similar.    
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1 are measured in diff erent studies makes the variation 
in component latencies across experiments quite 
obvious. Th erefore, although a specifi c latency is 
often denoted by the name of an ERP component, 
this latency is approximate and often specifi c to the 
context in which the component was fi rst identifi ed, 
and latency cannot be used as a direct means of 
determining whether a component in a given study 
is the same as a component observed in previous 
studies, especially if the subjects, stimuli, or task 
diff er considerably across studies. 

 Many ERP component names also make refer-
ence to the polarity of the component, but polarity 
may vary for a single component. For example, the 
C1 wave reverses in polarity for stimuli in the upper 
visual fi eld compared with stimuli presented in the 
lower visual fi eld owing to the cortical folding pat-
tern of primary visual cortex. Both the positive- and 
negative-polarity C1 waves refl ect the same under-
lying process and are therefore the same ERP com-
ponent by any reasonable defi nition. Although 
other ERP components do not reverse polarity so 
dramatically, diff erences in cortical folding pattern 
across subjects might occasionally lead to polarity 
diff erences from one subject to the next at a given 
electrode site (see, e.g., subject 3 in Figure   1.4  A). 
Furthermore, as discussed above, all ERP compo-
nents are positive on one end of the dipole and 
negative on the other end, and all ERP components 
therefore reverse polarity at some place on the 
head. 

 If the polarity and timing information cannot be 
used to identify a component, what about the scalp 
distribution? Scalp distribution is often used to dis-
tinguish between components that have the same 
polarity and similar latencies, such as the “frontally 
distributed P3a” versus the “centroparietal P3b.” In 
these cases, researchers often refer to a  family  of 
components (e.g., the N2 family of components) 
consisting of a set of  subcomponents  (e.g., the N2a, 
N2b, N2c, and N2pc subcomponents). Each sub-
component is actually a full-blown component, 
refl ecting a diff erent functionally and anatomically 
defi ned process, and the diff erent subcomponents 
within a family are united only by their common 
polarity and similar timing. 

 Although adding the scalp distribution informa-
tion can help to defi ne a component, it will be inef-
fective if multiple subcomponents have similar scalp 
distributions (e.g., it seems likely that multiple dif-
ferent brain processes will produce a positive voltage 
defl ection over the frontal lobes between 300 and 
600 ms). Moreover, the scalp distribution for a single 

ERP component may vary across experimental con-
texts. For example, one subcomponent of the audi-
tory N1 family arises from tonotopically mapped 
auditory cortex, and its scalp distribution therefore 
changes according to the pitch of the stimulus 
(Bertrand et al.,   1991  ). Moreover, the scalp distribu-
tion in any given time range is infl uenced by all the 
components active in that range, which makes it dif-
fi cult to determine the true distribution of a single 
component in a given experiment (unless that com-
ponent has been isolated using one of the approaches 
described later in this chapter). Furthermore, the 
apparent scalp distribution can vary widely, depend-
ing on the choice of reference electrode (see Luck, 
  2005  , chap. 3). 

 One additional variable that is often used to iden-
tify and defi ne ERP components is their sensitivity 
to experimental manipulations or factors (see 
Donchin et al.,   1978  , for a thorough discussion). 
Th at is, what are the tasks, stimuli, timing parame-
ters, and other factors that allow the component to 
be observed, and how do changes in these various 
factors modulate the timing, amplitude, and scalp 
distribution of the component? For example, the 
N2pc is observed for a target stimulus surrounded 
by distractors but not for a target stimulus presented 
in isolation (see Chapter 12, this volume). Th is 
dependence of the N2pc on the presence of distract-
ing information in the display has played a large role 
in shaping various theories of the component. 
Further more, the N2pc has been shown to be largely 
unaff ected by the probability of the target item (see 
Chapter 12, this volume), in contrast to the P3b. 
Th erefore, sensitivity to experimental factors can 
help to identify the nature of a component and to 
distinguish among diff erent components. However, 
just as discussed above with the variables of polarity, 
timing, and scalp distribution, sensitivity to experi-
mental factors is not by itself a suffi  cient method for 
defi ning a component. For example, multiple ERP 
components may be sensitive to the same experi-
mental manipulation, such as the similar dependence 
of P2 and P3b amplitude on the probability of the 
target stimulus. Furthermore, it is diffi  cult to deter-
mine if an experimental manipulation has modu-
lated the strength or timing of a specifi c component, 
or rather has resulted in a change in task strategy that 
has aff ected some other overlapping component. 
Th at is, it is diffi  cult to assess whether an experimen-
tal manipulation has made an impact on a specifi c 
component, and it is also diffi  cult to determine 
whether the experimental manipulation changed the 
strength, location, or timing of the neural process. 
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1  From these considerations, it should be clear that 
it is not appropriate to formally defi ne an  ERP com-
ponent  in terms of a combination of polarity, timing, 
scalp distribution, and sensitivity to experimental 
manipulations. Th ese variables may be associated 
with a given component, but they do not defi ne the 
component. We have instead argued that the term 
 ERP component  is best defi ned in terms of the scalp-
recorded activity generated by a specifi c neural or 
psychological process, which in turn produces the 
polarity, latency, and scalp distribution of the com-
ponent (which vary as that process varies), along 
with the sensitivity of the component to experimen-
tal manipulations. Unfortunately, our preferred 
defi nition is not very useful as an  operational  defi ni-
tion (i.e., a defi nition that describes the operations 
necessary to determine whether a specifi c voltage 
defl ection refl ects a specifi c component), because it 
is not usually possible to determine from the obser-
ved waveforms the voltage that is attributable to a 
specifi c known process. 

 Th us, in practice, the best way to identify a spe-
cifi c component is to take a  converging evidence  
approach that intelligently combines various factors 
(including but not limited to polarity, latency, scalp 
distribution, and sensitivity to experimental manip-
ulations) that would be expected to be true of a 
given process in a given context. For example, imag-
ine that an oddball task was used in a study of 
elderly individuals, and a large positive voltage with 
a parietal maximum was observed to peak at 500 ms 
for the oddball stimuli, with a much smaller voltage 
observed for the standard stimuli. Four pieces of 
evidence converge on the conclusion that this volt-
age consists predominantly of the P3b component: 
(1) the voltage is positive at sites where the P3b is 
typically positive; (2) the latency is what we would 
expect given that cognition is typically slowed in 
elderly individuals; (3) the scalp distribution is con-
sistent with previous studies of the P3b; and (4) the 
voltage shows the typical dependence on target 
probability. Now consider an example in which 
5-year-old children are asked to passively view pic-
tures of same-race faces and pictures of diff erent-
race faces, and a greater positive voltage is observed 
for the diff erent-race faces with a peak latency 
of 325 ms. Imagine also that the voltage for both 
same-race and diff erent-race faces was largest at 
parietal electrode sites, but the diff erence in voltage 
between same-race and diff erent-race faces was larg-
est at central sites. Is this a P3b component? 
A superfi cial analysis might lead to the conclusion 
that a larger P3b component was observed for the 

diff erent-race faces, because the voltage was positive, 
peaked near 300 ms, and was maximal at parietal 
electrode sites. However, 325 ms would be an unusu-
ally early latency for a visual P3b component, espe-
cially in 5-year-old children. Moreover, even if a P3b 
were present in this latency range, the diff erence 
between conditions had a more central scalp distri-
bution than is typical for the P3b component. Th us, 
it would be unlikely that this experimental manipu-
lation primarily infl uenced P3b amplitude. 

 When this converging evidence approach is 
taken, it is important to consider both the strength 
of the evidence that a given component has a specifi c 
property and the degree to which other components 
might have that same property (this is essentially an 
application of Bayes’s theorem). For example, 
although the N400 component is almost always 
present between 300 and 600 ms (see Chapter 15, 
this volume), many other components are also active 
in this latency range, so the fi nding that a given volt-
age defl ection occurs in this latency range is not 
strong evidence that the defl ection is an N400 com-
ponent. In contrast, the lateralized readiness poten-
tial (LRP; see Chapter 9, this volume) and the N2pc 
component (see Chapter 12, this volume) have dis-
tinctive lateralized scalp distributions that are not 
present for many other components; the presence 
of this distinctive scalp distribution therefore pro-
vides strong (although not infallible) evidence that 
an LRP or N2pc was present. 

 With this approach, one is never completely cer-
tain that a specifi c component has been identifi ed, 
and the strength of a conclusion will depend on 
both the number of pieces of converging evidence 
and the strength of each piece. Although it may be 
disappointing that one can never be certain that a 
specifi c component has been identifi ed, this kind of 
uncertainty is common in all fi elds of science. More-
over, as discussed in the latter part of this chapter, it 
is sometimes possible to use  component-independent 
experimental designs  in which the conclusions of a 
study do not depend on identifying a specifi c ERP 
component.      

   Linking Components with Processes: Th e 
Problems of Forward and Reverse Inference   
 Up to this point, we have assumed that we already 
know what neural or psychological process is 
refl ected by a given ERP component. In this sec-
tion, we consider how one might create this link 
(which we call the  problem of forward inference ) and 
how one might use this information to draw con-
clusions in new experiments (which Poldrack,   2006  , 

01-Luck-II-01.indd   1701-Luck-II-01.indd   17 5/19/2011   5:38:47 PM5/19/2011   5:38:47 PM

OUP UNCORRECTED PROOF – FIRST-PROOF, 19/05/2011, GLYPH



18 erp components

104

103

102

101

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1 called the  problem of reverse inference  in the context 
of neuroimaging).    

   Th e Problem of Forward Inference   
 It is more diffi  cult than one might think to demon-
strate that a given ERP component (or any other 
physiological measure) refl ects a specifi c neural or 
psychological process. Th e challenge arises from the 
fact that we are looking for a neural measure of 
a given process because we do not fully understand 
the process and wish to use the neural measure to 
study the process. Because we do not fully under-
stand the process, it is diffi  cult to design unambigu-
ous tests of the hypothesis that a given component 
refl ects this process. For example, imagine that com-
ponent A is hypothesized to refl ect the encoding of 
information in verbal working memory. We could 
test this hypothesis by comparing the ERPs in a con-
dition in which subjects are asked to encode words 
in working memory and a condition in which they 
passively view the same words. However, it is possi-
ble that working memory encoding is fairly auto-
matic and would occur in both conditions; thus, the 
absence of a diff erence in component A between 
conditions might not be strong evidence against the 
hypothesis that this component refl ects working 
memory updating. Moreover, if component A is 
found to diff er between conditions, this could refl ect 
some other process that diff ers between these condi-
tions (see Shulman,   1996  , for an interesting discus-
sion of a related set of issues in the context of 
neuroimaging). 

 Th is problem could potentially be solved with 
a bootstrapping approach (the term  bootstrapping  
refers to “pulling oneself up by one’s bootstraps”). 
In this approach, one begins by trying the most 
obvious and unassailable manipulations of a given 
process to see if the component is present under the 
conditions in which everyone would agree that the 
process should be present. If the hypothesis survives 
multiple tests of this nature, it is tentatively accepted. 
Th e component is then used to test new hypotheses 
about the process it is thought to refl ect. If these 
experiments yield results that are broadly consistent 
with evidence from other approaches, then confi -
dence in the link between the component and the 
process continues to grow. If discrepancies arise, 
then researchers must reappraise the link between 
the component and the process. 

 As an example, consider the N2pc component 
(for a detailed discussion, see Chapter 12, this 
volume). Luck and Hillyard (  1994  ) proposed that 
this component refl ects an attentional fi ltering 

process that is used to suppress inputs from distrac-
tor objects surrounding a potential target. Th is was 
initially tested with the most obvious possible 
manipulations, such as removing the distractors to 
see if the N2pc component would disappear. 
A second set of experiments tested more refi ned 
mani pulations based on fi ndings from monkey sin-
gle-unit experiments (Luck et al.,   1997  ). Th e results 
of these experiments were consistent with the pro-
posed link between N2pc and attentional fi ltering, 
and subsequent experiments assumed that this link 
was true and used it to test hypotheses about atten-
tion. For example, one study asked whether the 
same putative fi ltering mechanism was used by tar-
gets defi ned by diff erent types of features (Girelli & 
Luck,   1997  ), and another series of experiments 
asked whether this mechanism was applied in paral-
lel or in serial (Woodman & Luck,   1999 ,  2003b  ). 
However, later evidence demonstrated that the 
N2pc does not refl ect fi ltering of the distractors per 
se, instead refl ecting operations that must be applied 
to the attended object itself when distractors are 
present (Hickey et al.,   2009  ). Th is is a modest change 
in the process thought to be refl ected by the N2pc, 
but it was enough to slightly change the conclusions 
that can be drawn from the previous studies.     

   Th e Problem of Reverse Inference   
 Once the problem of forward inference has been 
solved and a given component has been linked with 
some certainty to a given process, it is desirable to 
use this component as a measure of the presence, 
magnitude, and timing of that process in new exper-
iments. Th is leads to the problem of reverse infer-
ence: If a component is present at a particular time, 
can we conclude that the process was present at that 
time? In Poldrack’s (  2006  ) analysis of this problem 
in the context of neuroimaging, the question is 
framed as follows: If brain activity has previously 
been observed in area X when process P is active, 
can we use the presence of activity in area X in a new 
experiment as evidence that process P was active in 
that experiment? As an example, Poldrack cited 
experiments using diff erences in activity in the 
dorsal striatum across conditions, which had previ-
ously been associated with reward processing, as evi-
dence that reward mechanisms were diff erentially 
active in these conditions. 

 However, one must be cautious about using 
reverse inference. Reverse inference is actually a case 
of the well-known logical error of  affi  rming the conse-
quent . If the presence of P (e.g., reward) leads to the 
occurrence of X (activity in the striatum), this does 
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1 not mean that the occurrence of X necessarily entails 
the presence of P. For example, sleeping (P) causes 
the eyes to close (X), but eye closure (X) does not 
necessarily mean that someone is asleep (P). Reverse 
inference is valid only when it is possible 
to say that X occurs if  and only if  P occurs (i.e., X 
never occurs without P). In functional magnetic 
resonance imaging (fMRI) this standard is diffi  cult 
to meet, because it is likely that the thousands of 
neurons in a given voxel and the millions of neurons 
within a cortical area are involved in multiple pro-
cesses (e.g., the same neurons in visual cortex that are 
involved in perception are also involved in working 
memory). Consequently, it is not usually possible to 
assert that activity in a given voxel occurs if and only 
if a single process occurred. 

 Fortunately, an if-and-only-if condition is not as 
diffi  cult to achieve for ERP components, because 
scalp ERPs represent a subset of the activity occur-
ring within a given brain area. As described earlier, 
ERPs refl ect the synchronous activity of cortical 
pyramidal cells, and many processes that occur 
within a given brain region will not lead to an ERP 
signature on the scalp. Consequently, whereas almost 
any process within a given brain region will change 
metabolic activity and therefore change the blood 
oxygen-dependent (BOLD) activity, only a subset of 
processes within a given region will produce a mea-
surable ERP on the scalp. Th is makes ERP compo-
nents more likely than BOLD responses to be tied to 
a specifi c process, and makes it less likely that a 
change in a given ERP component refl ects diff erent 
processes in diff erent experiments. In other words, it 
is more plausible that a specifi c ERP component will 
be present if and only if a given process is present 
than that a BOLD response in a specifi c voxel will be 
present if and only if a given process is present. 

 For example, the evidence to date indicates that 
the N2pc component is present if and only if atten-
tion is allocated to an object in the presence of dis-
tractors. Of course, future research may demonstrate 
that the N2pc component can sometimes be elic-
ited under conditions that do not involve this atten-
tion process, but it is at least plausible that this 
component might be present if and only if this 
attention process occurs. For example, when Luck 
and Ford (  1998  ) found that an N2pc was pre-
sent  for conjunction targets and not for feature tar-
gets, they were reasonably justifi ed in using reverse 
inference to draw the conclusion that a specifi c 
mechanism of attention was allocated to the con-
junction targets and not to the feature targets. 
In contrast, there is no area of the brain in which 

one could reasonably assume that the presence of an 
increased BOLD signal necessarily refl ected the 
allocation of attention. 

 Two main problems must be solved for reverse 
inference to be used with a given ERP component 
to draw strong conclusions. First, it is necessary to 
conduct a comprehensive set of experiments testing 
the hypothesis that the component of interest is 
present if and only if the corresponding process 
occurs. Th is is the problem of forward inference, 
and it is made diffi  cult by the fact that we do not 
usually know enough about the process that a com-
ponent hypothetically refl ects to know whether this 
process is present or absent in a given experimental 
condition. Second, once the problem of forward 
inference has been solved, new experiments that 
attempt to use reverse inference must solve the pro-
blem of component identifi cation. Th at is, one must 
be able to demonstrate that voltage defl ections 
observed in the new experiments represent the same 
component observed in the earlier studies that esta-
blished the link between the component and the 
process. 

 Th ese two challenges are suffi  ciently diffi  cult that 
it may never be possible to use reverse inference 
with complete certainty. However, as Poldrack 
(  2006  ) discussed in the context of neuroimaging, 
one can use a Bayesian approach to draw probabilis-
tic inferences on the basis of reverse inference. Th is 
involves assessing the probability that the ERP com-
ponent would be present even if the corresponding 
process was not active and the probability that the 
corresponding process would be active without elic-
iting the ERP component. Th ese probabilities are 
diffi  cult to calculate, so this Bayesian approach is 
usually used informally. For example, we do not 
know the probability that an N2pc component 
would be present without the allocation of atten-
tion, and we do not know the probability that the 
allocation of attention may occur without an N2pc 
component. Th us, we cannot provide a precise 
probability for the claim that the variety of atten-
tion indexed by the N2pc component is needed for 
conjunction targets but not for feature targets (based 
on the presence of an N2pc for the former but not 
the latter). However, given that several experiments 
support the contention that N2pc is observed if and 
only if this particular mechanism of attention is 
present, and given that the N2pc can be isolated 
quite well from other components because of its dis-
tinctive contralateral scalp distribution, we can say 
something informal such as “Th e fi nding that an 
N2pc was present for conjunction targets but not 
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1 feature targets provides good evidence that the 
attentional processes that were present in prior 
N2pc experiments are needed for the detection of 
conjunction targets but not for the detection of fea-
ture targets.” 

 Interestingly, the logic of reverse inference may 
sometimes allow stronger conclusions to be drawn 
from the absence of an ERP component than from 
its presence. If we can say that a given physiological 
measure X is always present when process P occurs —
 without the if-and-only-if restriction — then we can 
use the  modus tollens  argument from classical logic. 
Th is argument says that if we know that the presence 
of P entails X, then the absence of X entails the 
absence of P. Th at is, if previous experiments demon-
strate that process P always leads to physiological 
measure X, then the absence of physiological mea-
sure X in a new experiment can be used to deduce 
that process P was not present. For example, Vogel 
and colleagues (  1998  ) assumed that working memory 
encoding leads to the occurrence of a P3 wave (for 
supporting evidence, see Chapter 7, this volume). 
Th ey found that this component was absent under 
conditions that led to an “attentional blink,” and 
from this they concluded that no working memory 
encoding occurred for stimuli presented during the 
attentional blink. Th is is a logically valid conclusion. 
However, its truth depends on the validity of the ini-
tial assumption that working memory encoding 
leads to a P3 wave, which is not certain. Nevertheless, 
this general approach is less problematic than the 
typical use of reverse inference, which is based both 
on the assumption that a component is present when 
the corresponding process occurs and on the further 
assumption that the component is absent when the 
process does not occur. Of course, it is important to 
ensure that the absence of a voltage defl ection in a 
given condition truly refl ects the absence of the com-
ponent of interest rather than cancellation by an 
opposite-polarity component, latency jitter, poor 
signal quality, low statistical power, and so on.      

   Solving and Avoiding the Problems 
Associated with ERP Components   
 We have now seen how diffi  cult it can be to associ-
ate changes in the observed ERP waveform with 
changes in an underlying ERP component. You 
may fi nd yourself rightfully wondering, so what is 
this technique good for? In this section, we explore 
methods and strategies that have proven successful 
in using ERP components to answer questions 
about the mind and brain. 

 Event-related potentials provide a unique window 
into ongoing processing in the brain, serving as a 
continuous play-by-play of processing as it unfolds 
over time. It is this high temporal resolution of ERPs 
that makes them so desirable as a measure of brain 
processing. With ERPs, we can see processing before, 
during, and after the execution of behavioral res-
ponses, providing us with additional insights that 
cannot be gained with behavioral measures alone. 
However, the limitations of the ERP technique dis-
cussed in the previous sections mean that ERPs are 
only well suited for answering certain types of ques-
tions. Understanding the types of questions that can 
be readily answered with ERPs is essential for the 
successful application of the technique, and the 
remainder of the chapter will focus on describing 
several types of questions that ERPs have proven 
useful in answering. 

 Th e domains covered here may not encompass 
every current or potential use of ERPs; for example, 
ERPs may be useful as potential biomarkers in mental 
illness (Javitt et al.,   2008  ; Luck et al., in press). 
However, the topics covered here provide a broad 
overview of the ways in which ERPs have been most 
commonly used to make scientifi c progress. Th ese 
can be broadly divided into four domains, which we 
will explore in turn below: (1) determining which 
cognitive or neural process diff ers across conditions 
or across groups (e.g., perception, attention, response 
selection); (2) determining whether and when the 
brain has completed some set of processes; (3) uncov-
ering new mental processes and subdividing known 
processes; and (4) covert monitoring of processing in 
situations in which overt behavior is diffi  cult to mea-
sure or interpret (e.g., coma, infancy). We will exam-
ine each of these areas, providing specifi c examples of 
how ERPs have been used to expand our understand-
ing in each domain.    

   Using Specifi c Components 
to Index Specifi c Processes   
 One of the most notable and widely used applica-
tions of ERPs is to determine which specifi c neural 
or psychological process is aff ected by the factors 
of interest in the experiment. In other words, does 
a particular manipulation aff ect process A or pro-
cess  B or alternatively, do two groups of individuals 
diff er in process A or process B? Using ERPs in this 
manner usually requires that (1) the precise neural 
or psychological process indexed by a component is 
known and understood and that (2) the component 
can be successfully isolated from the surrounding 
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1 and overlapping ERP components. As discussed 
earlier in the chapter, both of these requirements are 
diffi  cult to meet; therefore, this branch of research 
typically relies on a number of assumptions con-
cerning the specifi c nature of the ERP component 
of interest. Th ese assumptions about the nature 
of the component are usually based on a wealth of 
previous research on the component and ideally 
include both studies in which the experimental 
manipulations that alter the component are explored 
and studies that are specifi cally aimed at elucidating 
the functional nature of the component (termed 
 ERPology  by Luck,   2005  ). We will fi rst give an 
example of using components in this process-
dependent manner to make the main issues facing 
researchers in this domain concrete, followed by 
some tips on how to successfully isolate and mea-
sure an ERP component. 

 Imagine that we wanted to understand why 
schizophrenia patients show prolonged reaction 
times (RTs) across a wide variety of behavioral tasks, 
an eff ect that has been observed for decades (see the 
review by Nuechterlein,   1977  ). In other words, 
which stage or stages of processing are slowed in 
schizophrenia patients, producing the slowing of 
behavioral RTs? We can address this question by 
examining whether particular ERP components are 
aff ected in the patient group compared to healthy 
controls. Th at is, is the scalp-recorded signature of a 
particular cognitive process delayed in latency or 
decreased in amplitude in the patients compared to 
the controls? Th is general approach has been used in 
studies of schizophrenia to examine abnormalities 
in many components, including the mismatch neg-
ativity (MMN), the P1 wave, the N2pc component, 
the P3 wave, the lateralized readiness potential, and 
the error-related negativity (Bates et al.,   2002  ; 
Butler et al.,   2007  ; Javitt,   2000  ; Jeon & Polich, 
  2003  ; Luck et al.,   2006 ,  2009  ; see Chapter 19, this 
volume, for a review). 

 Th is approach — as typically applied — requires 
that previous experiments have already linked a 
component to this process, and it requires deter-
mining that a newly observed diff erence between 
patients and controls refl ects a change in this spe-
cifi c component and not some other component 
(see the earlier sections on forward and reverse infer-
ence). For example, the N2pc component was used 
to assess whether prolonged behavioral RTs are 
accompanied by delays in the allocation of covert 
visual spatial attention in schizophrenia patients 
(Luck et al.,   2006  ), which relied on previous work 

demonstrating that the N2pc is a scalp-recorded 
signature of covert shifts of visual attention and on 
the ability to isolate the N2pc from the surrounding 
ERP activity (which was achieved by using contral-
ateral-minus-ipsilateral diff erence waves, as descri-
bed in more detail below). Additionally, we can use 
ERPs to assess whether multiple stages of processing 
are aff ected in a patient group. For example, is the 
RT slowing exhibited by schizophrenia patients 
caused by a generalized slowing of all cognitive and 
neural processing or a combination of some subset 
of processes?    

   methods for isolating an 
erp component   
 As described above, the ability to use ERP compo-
nents as indexes of specifi c processes (reverse infer-
ence) depends on the ability to successfully isolate 
the component of interest from the surrounding 
ERP components. Th is is not an easy task. It may 
even seem impossible. However, there are a number 
of tricks that can be used to isolate a particular ERP 
component of interest from all of the other ongoing 
activity. Although the specifi c methods will depend 
on the specifi c task, ERP component, question of 
interest, and so on, the following strategies have 
proven successful in a number of diff erent contexts. 

 One strategy is to focus the experimental design 
on ERP components that are large compared to the 
surrounding components. For example, the P3 wave 
is often  > 10 microvolts, making it easy to distinguish 
from the much smaller surrounding and overlapping 
ERP components. A second strategy is to focus the 
task design such that only one or two ERP compo-
nents diff er across conditions. When the design 
focuses on a small number of ERP components, it 
is easier to avoid signifi cant component overlap, 
making the measurement of a specifi c component 
much easier. A third strategy involves subtracting 
out overlapping ERP components by creating dif-
ference waves between conditions or between elec-
trode sites. For example, the lateralized readiness 
potential (LRP) is a diff erence wave created by sub-
tracting the voltage at sites ipsilateral to the response 
hand from the activity at sites contralateral to the 
response hand. Th is subtraction process eff ectively 
isolates only the activity related to res ponse selec-
tion, subtracting away the many other processes that 
do not diff er between the contralateral and ipsilat-
eral hemispheres; indeed, any brain activity that 
diff ers between the contralateral and ipsilateral elec-
trode sites (relative to the hand that responds) must 
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1 be generated during or after the process that deter-
mines which hand should respond (see Chap ter 9, 
this volume). Similarly, by computing a rare-minus-
frequent diff erence wave in an odd ball paradigm, it 
is possible to isolate probability-sensitive ERP com-
ponents such as the P3 wave (see, e.g., Luck et al., 
  2009  ; Vogel et al.,   1998  ). 

 Although diff erence waveforms can be an eff ec-
tive tool in isolating specifi c ERP components, they 
are not a panacea. First, a diff erence waveform is 
eff ective in isolating a specifi c ERP component only 
when all or most other components do no not vary 
across the two conditions used in the subtraction. 
Second, when a diff erence wave varies in amplitude 
across groups or across conditions, it is diffi  cult to 
know which of the two waveforms used in the sub-
traction actually varies. For example, the LRP is 
decreased in schizophrenia patients relative to con-
trol subjects (Luck et al.,   2009  ), but this could 
refl ect less activation over the contralateral hemi-
sphere or more activation over the ipsilateral hemi-
sphere. Th ird, activity in a diff erence wave could 
refl ect latency diff erences between the two original 
waveforms rather than a diff erence in amplitude. 

 An additional class of strategies uses scalp distri-
bution information to isolate components. A simple 
version of this strategy is simply to measure a given 
component at an electrode site where this compo-
nent is relatively large and other components are 
relatively small. A somewhat more sophisticated 
approach is to use a  vector fi lter , which combines the 
data across all scalp sites in a manner that refl ects 
the scalp distribution of a given component (see, 
e.g., Gehring et al.,   1992  ). Event-related potential 
source localization techniques go one step further, 
providing a source waveform for each estimated 
generator site. In addition, ICA and PCA can use 
scalp distribution information to isolate the time 
course of each component. 

 When evaluating these diff erent approaches, it is 
important to remember that, just as every researcher 
has his or her own individual limitations, each tech-
nique used to isolate ERP components is limited in 
its own special way. No technique — despite what its 
proponents may shout loudly from the research 
pulpit — is without its shortcomings, fl aws, and lim-
itations. Successfully using any of the techniques at 
our disposal requires that we know and understand 
the limitations of the method. Before using source 
localization, ICA, or even simple diff erence waves, 
one must be careful to fully understand how the 
technique works and when it might fail.     

   methods for measuring an 
erp component   
 Once a component has been successfully isolated 
from the overlapping activity, some quantitative 
assessment of the component must be made in order 
to compare it across conditions or across groups of 
subjects. Th e most widely used quantitative charac-
terizations of ERP components include amplitude 
and latency assessments. Despite the inherent dif-
ference between peaks and components described 
above, it is common for ERP researchers to quantify 
ERP results by measuring the amplitude and latency 
of the peaks. Peak amplitude and peak latency mea-
sures are generally computed by choosing a time 
window surrounding a peak in the waveform and 
fi nding the most positive point in that time win-
dow  (or the most negative point for a negative-
going peak). Th e amplitude at this point is used as 
a representation of the magnitude of the compo-
nent, and the latency of this point is used as a repre-
sentation of the timing of the component. 
Historically, peak measures were employed because, 
as Donchin and Heffl  ey (  1978  ) so aptly stated, “it 
requires nothing but an x-y plotter, a ruler, and 
enough time” (p. 557). Th ese were often all that a 
typical ERP researcher had at his or her disposal in 
the early days of ERP research, but researchers today 
have computers capable of performing much more 
advanced algorithms than those that a ruler can 
accomplish, and we are no longer limited to such 
simple measurement techniques. 

 Is there anything special about the amplitude or 
timing of the peaks in the observed ERP waveforms? 
As Figure   1.2   illustrates, the amplitude and timing 
of the peaks in the observed waveform may be quite 
diff erent from the amplitude and timing of the 
underlying components that sum together to pro-
duce the observed waveform. And as Figure   1.3   
illustrates, factors such as latency variability can 
strongly infl uence peak amplitude. Moreover, it 
seems simplistic to assume that a process that 
extends over hundreds of milliseconds can be quan-
tifi ed by the value of a single time point. In addi-
tion, when the values are measured at multiple 
electrode sites, it makes no sense to use the peak at 
each electrode site to measure a single component: 
Th e peak will occur at a diff erent time at each elec-
trode site, but a given component necessarily has 
the same time course at each electrode site (because 
of the instantaneous transmission of voltage). Peak 
measures have other shortcomings as well (summa-
rized in Luck,   2005  , chap. 6), and there is a clear 
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1 trend away from peak measures among sophisti-
cated ERP researchers. 

 How, then, can one better quantify the magni-
tude and timing of an ERP component? Th e fi rst 
step is usually to isolate the component by comput-
ing some kind of diff erence wave that subtracts away 
most of the other components. As an example, con-
sider the MMN data shown in Figure   1.6  . In this 
experiment, subjects were presented with a fre-
quently occurring  standard  pitch or a rare  deviant  
pitch every 1000 ms (see Chapter 6, this volume, 
for details). When the deviant pitch was suffi  ciently 
diff erent from the standard pitch, the ERP wave-
form was more negative for the deviant pitch than 
for the standard pitch from approximately 100 to 
200 ms poststimulus. If we attempted to quantify 
the magnitude of this eff ect by measuring the ampli-
tude of the most negative peak between 100 and 
200 ms, we would face two serious problems. First, 
because the overall waveform contains a P2 peak 
during this interval, there is no negative peak to be 
measured in many of the waveforms shown in 
Figure   1.6   (especially in the waveforms elicited by 
the standards). Second, even if we could fi nd a nega-
tive peak, the voltage at this peak would refl ect a com-
bination of this P2 wave, the MMN, and any other 
components that were active during this period.   5    
Th us, it is better to quantify the magnitude of the 

MMN from the deviant-minus-standard diff erence 
wave.  

 By measuring amplitude or latency from a diff er-
ence wave, the contributions of the overlapping 
peaks are reduced or eliminated. Of course, this will 
work well only if the other components are equiva-
lent across the two waveforms that are used for the 
subtraction so that they are eliminated in the diff er-
ence wave. One could use a peak amplitude measure 
to quantify the amplitude of a component in the dif-
ference, and this would certainly be an impro vement 
over measuring peak amplitude from the two origi-
nal waveforms used in the subtraction. However, 
there is still no particular reason to choose this one 
point as a refl ection of the magnitude of the underly-
ing process. If one is interested in the overall magni-
tude of a brain response, it is usually more reasonable 
to measure the area under the curve or the mean 
voltage over the duration of the component (these 
are nearly equivalent: mean is simply area divided by 
duration). An important exception arises, however, 
when one is trying to measure the amplitude of a 
component that varies in latency across conditions 
or across groups; in this case, it may be necessary to 
use a method that fi nds the peak and then measures 
the amplitude at (or around) this peak. 

 Peak latency is also a poor measure in most cases, 
because the latency of the peak is not usually a par-
ticularly interesting time point. Quantifying the 
latency of an ERP component by fi nding the peak is 
analogous to quantifying RT by fi nding the mode 
of the RT distribution for each subject. Instead, it 
is sometimes possible to quantify the midpoint of a 
component by fi nding the time point that divides 
the area under the curve into two equal portions. Th is 
is called the  50 %  area latency  measure, and it is closely 
related to median RT (see Luck,   2005  , chap. 6). 
In addition, theories of cognitive processes often 
make predictions about the onset or duration of a 
process rather than the midpoint. Kiesel and col-
leagues (  2008  ) provide an excellent comparison of 
the diff erent methods that can be used for the onset 
of a component, and these methods can be easily 
extended to measure the off set and duration of a 
component.      

   Assessing the Time Course of Processing   
 Th e temporal resolution of ERPs makes them an 
excellent tool for determining the time course of a 
neural or psychological process. Th e simplest way to 
do this is to measure the latency of a given peak in 
two diff erent conditions or two diff erent groups and 

10045 mV
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     Fig. 1.6.  Example of the use of diff erence waves in the context 
of MMN. Th e left side shows the waveform elicited by a 1000 
Hz standard tone that occurred on 80 %  of trials, overlaid with 
deviant stimuli that diff ered in pitch from the standard by 
varying amounts and occurred on 20 %  of trials. Th e right side 
shows the deviant-minus-standard diff erence waves. Note that 
this is the same as in Figure 6.1 in Chapter 6, this volume.    
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1 use this as a measure of the amount of time required 
for this process to occur in the two conditions or 
two groups. However, this approach is not usually 
very powerful, because it does not isolate a specifi c 
component and because it uses the peak as a mea-
sure of timing. A more powerful approach is to 
compare the waveforms from two conditions or 
from two groups of subjects to ascertain the point in 
time at which the waveforms begin to diverge. For 
example, ERPs have been used in the emotion lit-
erature to determine when, after the onset of a stim-
ulus, processing diff ers between emotion-evoking 
and neutral stimuli (see Chapter 16, this volume). 
Th ere are advantages and limitations to using ERPs 
in this manner, and we will explore both of these 
through some examples below. 

 Let’s consider the emotion example mentioned 
above, in which we wish to know by what point in 
time processing related to the emotional content of 
a stimulus has begun. In other words, by what point 
in time has the brain distinguished between emo-
tional and nonemotional stimuli? We can answer 
this question by comparing the ERP waveforms 
elicited by neutral stimuli (e.g., a picture of a land-
scape) and emotion-eliciting stimuli (e.g., a picture 
of a mutilation). We can use the time point at which 
the waveforms begin to diverge as a measure of 
when the brain has distinguished between the neu-
tral and emotional stimuli. Th at is, the waveforms 
between an emotional and a nonemotional condi-
tion cannot diverge until the brain has begun to 
distinguish the emotional content of the stimulus 
(provided that all other factors, including physical 
stimulus factors, are matched between the condi-
tions). Th e advantage of this approach is that, 
although specifi c ERP components may diff er bet-
ween the conditions, the conclusions about timing 
do not rely on isolating a specifi c ERP component. 
Th at is, the presence of a diff erence between condi-
tions at a given time indicates that the brain has dis-
tinguished between the two conditions by this time, 
regardless of which component was responsible for 
this diff erence. Th is approach is one case of what are 
called  component-independent experimental designs  
(see Luck,   2005  , chap. 2). 

 Because this method does not require isolating a 
specifi c component or linking a component with a 
specifi c process, it generally requires fewer assump-
tions than using ERPs in a component-dependent 
manner. However, there are some limitations to this 
approach. For example, it is important to note that 
this method provides an upper bound on the timing 
of an eff ect. Because many processes may be invisible 

in scalp ERP recordings, the brain might make a dis-
tinction between two stimuli long before the fi rst 
point at which the scalp-recorded signals diff er. 
Th erefore, one can use ERPs to say that a particular 
eff ect has occurred  by  a particular time point, but 
one cannot use ERPs to conclude that an eff ect did 
not begin  until  a particular time. In our emotional 
content example, one could conclude that the brain 
has begun to process information related to emo-
tional information by the point at which the wave-
forms diverge. However, one could not say that 
emotional processing did not begin until that time 
point, because the eff ect could have begun earlier in 
brain areas that did not give rise to a scalp-recorded 
ERP. Generally speaking, this technique is valuable 
in providing evidence that an eff ect happens early in 
the processing stream, but it cannot be used to prove 
that an eff ect does not happen until late in the pro-
cessing stream. 

 Th e limitations in the conclusions that can be 
drawn about timing from ERPs may seem debil-
itating to the technique, but using ERPs in this 
manner has answered many important questions 
about cognitive and neural processing. For example, 
ERPs were able to end a long-standing debate in the 
attention literature about whether attention oper-
ates at an early stage or a late stage of processing (for 
reviews, see Hillyard et al.,   1998  ; Luck et al.,   2000  ). 
It is diffi  cult to determine from behavioral studies 
whether the eff ects of attention on response speed 
and accuracy arose from changes in perceptual pro-
cessing or changes in a postperceptual stage of 
processing. However, because ERPs provide a con-
tinuous measure of processing between the stim ulus 
and the response, they can indicate whether the 
attention eff ects begin early or late in the processing 
stream. Th at is, the  locus of selection  can be assessed 
directly by asking whether the ERP waveforms for 
attended and ignored stimuli diverge early in time 
(e.g., within the fi rst 100 ms after stimulus onset) or 
late in time (e.g., more than a few hundred millisec-
onds after stimulus onset). Research using this 
approach has shown that — at least under some con-
ditions — attention infl uences sensory processing 
within the fi rst 50 ms after stimulus onset for audi-
tory stimuli and within the fi rst 100 ms after stimu-
lus onset for visual stimuli (see Chapter 11, this 
volume). Th ese ERP results provided key evidence 
in favor of early selection models of attention, help-
ing to answer a fundamental question that could not 
be easily addressed using behavioral techniques. 

 Th is time-based approach is often combined 
with the process-specifi c approach described in the 
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1 previous section, in which the eff ects are linked with 
specifi c components. For example, researchers have 
argued that the early ERP attention eff ects consist 
of modulations of specifi c sensory-evoked ERP 
components (see, e.g., Di Russo et al.,   2003  ; 
Woldorff  et al.,   1993  ). Th is has been diffi  cult to 
establish with complete certainty because of the 
many diffi  culties associated with trying to identify 
specifi c components, as discussed earlier in the 
chapter. However, the  converging evidence  approach 
described earlier in this chapter has been used to 
provide substantial support for the hypothesis that 
attention infl uences specifi c ERP components. Even 
more important, the simple fact that the waveforms 
for attended and unattended stimuli diverge at an 
early time provides very strong evidence that atten-
tion can infl uence perceptual processing.    

   measuring processes that occur prior 
to a component   
 A related approach uses an ERP component to 
assess the processes that must have occurred  prior  to 
the ERP component. Th e advantage of this approach 
is that it does not require that we fi rst determine a 
solid link between an ERP component and a spe-
cifi c process (i.e., we do not need to solve the for-
ward inference problem). Instead, we can use simple 
assumptions about the processes that must have 
occurred prior to the ERP component to draw 
inferences about these processes. 

 As an example, consider the N400 component, 
which countless studies have shown is larger for words 
that mismatch the current semantic context than for 
words that match this context (reviewed by Kutas, 
  1997  ). For example, the word  nurse  will elicit a larger 
N400 if it is preceded by an unrelated word such as 
 cup  than if it is preceded by a related word such as 
 doctor . Substantial controversy surrounds the ques-
tion of exactly what process the N400 component 
represents (see Chapter 15, this volume). However, it 
is safe to assume that this diff erence in N400 between 
words that match and mismatch a semantic context 
could not occur unless the words were perceived. 
Th us, if we see that a given word elicits a larger N400 
when the preceding word was related than if it was 
unrelated, then we can be certain that the words were 
perceived. Th is logic has been used to show that, 
under certain conditions, attention does not infl u-
ence sensory processing and that words are fully per-
ceived even when unattended (Luck et al.,   1996  ; 
Vogel et al.,   1998 ,  2005  ). Th at is, although attention 
infl uences sensory processing under some conditions, 
modulating the early sensory-evoked components, 

under other conditions attention only infl uences 
postperceptual processes that follow word identifi ca-
tion (see the reviews by Luck & Hillyard,   1999  ; Luck 
& Vecera,   2002  ). Under these latter conditions, atten-
tion has no impact on the diff erence in N400 ampli-
tude for words that match versus mismatch the 
current semantic context. 

 As a second example, consider the P3b compo-
nent, which every ERP researcher knows is larger 
for infrequent target stimuli than for frequently 
occurring standard stimuli. However, an important 
implication of this probability dependence often 
goes unnoticed. Specifi cally, the onset of the diff er-
ence in P3b amplitude between rare and frequent 
stimuli cannot occur until the brain has at least 
begun to determine whether the eliciting stimulus 
belongs to the rare category or the frequent category. 
Th is implication was spelled out very clearly by 
Kutas and colleagues (  1977  ), who framed it in terms 
of the then-popular idea that the P3b component 
was elicited by surprising stimuli: “before a stimulus 
can surprise it must be identifi ed. As P300 com-
monly appears as a discriminative response to spe-
cifi c stimuli within a series, its elicitation must 
be preceded by an adequate evaluation of the stimu-
lus at some level of processing” (p. 792–793). Th is 
idea is commonly described by saying that the 
latency of the P3 wave refl ects  stimulus evaluation 
time , but this is a somewhat vague description. It is 
much more precise — and powerful — to say that the 
onset of the diff erence between the waveforms elic-
ited by the rare and frequent stimuli refl ects a time 
at which the brain has begun to determine whether 
the stimulus belongs to the rare or the frequent cat-
egory. Th at is, the waveforms between these two 
conditions could not diff er until the brain has deter-
mined whether the stimulus belongs to the rare or 
the frequent category, indicating that by that point 
the brain has begun to categorize the stimuli. 

 We have applied this more precise framing of P3b 
latency to understanding why behavioral RTs are 
slowed in patients with schizophrenia (Luck et al., 
  2009  ). Each stimulus in this experiment was 
a digit or a letter, with one category rare (  p  = .2) and 
the other frequent (  p  = .8). Subjects were asked 
 press a button with one hand for digits and a button 
with the other hand for letters, and patient RTs were 
approximately 60 ms slower than control RTs. 
As shown in Figure   1.7  , the voltage in the P3 latency 
range was larger for control subjects than for patients, 
for both the rare and frequent stimulus categories, 
but the latency of the P3 peak was similar across 
groups. However, given that many diff erent processes 
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1 presumably overlap during the P3 time range, it is 
diffi  cult to draw fi rm conclusions on the basis of the 
time of the peak voltage in this time range. More 
precise conclusions can be drawn by examining the 
rare-minus-frequent diff erence waves in each group 
(Figure   1.7  , bottom). Th ese diff erence waves refl ect 
the diff erential processing of the rare and frequent 
stimulus categories, and any nonzero voltages in 
these diff erence waves must be a consequence of a 
preceding process that determined the category to 
which a stimulus belonged. Th e only diff erence 
between patients and controls in these diff erence 
waves was a reduction in amplitude in the time range 
of the N2 wave in patients. Th e diff erence waves 
were nearly identical across groups in the P3 time 
range, and the midpoint of the defl ection in this 
wave (the time that divided the area under the curve 
into equal halves) was nearly identical across groups. 
Th us, no delay was observed in the brain’s diff eren-
tial responding to rare versus frequent stimuli in the 
patients compared to the controls, despite a 60 ms 
slowing of the behavioral response in patients. Th is 
suggests that the slowing of behavioral responses was 
not caused by a slowing of the processes that lead up 

to the categorization of the stimuli, but was instead 
caused by postcategorization slowing. Th is conclu-
sion was further supported by a reduction in the 
amplitude and a slowing of the latency of the lateral-
ized readiness potential in the patients compared to 
the controls.  

 It is important to note that, in both of these 
examples, conclusions were drawn about the pro-
cesses that logically must have preceded the compo-
nent being measured rather than the process the 
component directly refl ected. Th at is, the N400 was 
used to assess the perceptual processes that must 
occur before the brain can distinguish between 
semantically related and unrelated words, and the 
P3b was used to assess the perceptual and categori-
zation processes that must occur before the brain 
can determine whether a stimulus belongs to a rare 
or a frequent category. An important advantage of 
this approach is that we do not need to know with 
certainty what process produces a given ERP com-
ponent. Instead, we can make very straightforward 
assumptions about what processes must occur for a 
component to diff er across conditions. In many 
cases, it does not actually matter which component 
diff ers across conditions; the mere presence of a dif-
ference indicates that the brain has made a specifi c 
discrimination by a given point in time. Th us, this 
is another example of a component-independent 
approach. Th is does not mean that components are 
irrelevant in the design of the experiment. Instead, 
it means that the conclusions do not depend on 
whether a specifi c component has been identifi ed in 
the results.      

   Uncovering and Subdividing 
Mental Processes   
 Event-related potentials have also been useful in 
identifying new, previously unknown mental pro-
cesses and subdividing known processes into multi-
ple separate subprocesses. From behavioral measures, 
it is diffi  cult to ascertain how many mental processes 
intervene between the occurrence of a stimulus and 
the execution of a behavior. However, ERPs provide 
a continuous measure of processing before, during, 
and after the execution of the behavior. Th erefore, it 
is possible with ERPs to identify processes that were 
previously unknown. 

 For example, error-related negativity (ERN; see 
Chapter 10, this volume) occurs after the execution 
of a response and therefore refl ects a process that 
behavioral measures cannot directly measure. 
Although previous studies had pointed to the exis-
tence of processes related to detecting and correcting 
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     Fig. 1.7.  Grand average ERPs recorded at the Pz electrode site 
from schizophrenia patients and control subjects (from the 
study of Luck et al.,   2009  ). Th e patient and control waveforms 
are overlaid for the frequent stimuli, the standard stimuli, and 
the rare-minus-frequent diff erence wave. Triangles show mean 
P3 latency for each group, quantifi ed as peak latency for the 
rare and frequent stimuli and 50 %  area latency (the point that 
divides the area under the curve into two equal portions) for 
the diff erence wave.    
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1 errors (e.g., Laming,   1979  ; Rabbitt,   1966  ), no one 
had hypothesized a process with the timing of the 
ERN. Th e ERN helped to focus research on the pro-
cesses occurring within 100 ms of an error response, 
which has led not only to numerous studies of pro-
cesses related to error detection, but also to a large 
literature on response-confl ict monitoring. 

 Similarly, ERPs can be used to determine whether 
a given behavioral eff ect is the result of a change in a 
single process or of multiple separable subprocesses. 
Almost every experimental manipulation that pro-
duces a behavioral eff ect leads to diff erences between 
conditions in multiple ERP components, and this 
naturally leads to the idea that the behavioral eff ect 
refl ects changes in more than one process. Consider, 
for example, manipulations of attention. It is parsi-
monious to assume that any experiment in which 
behavioral responses are faster or more accurate for 
attended stimuli than for unattended stimuli refl ects 
the operation of a single mechanism of attention, 
and most behavior-inspired theories of attention 
have taken a monolithic view of attention. However, 
ERP studies have demonstrated that diff erent 
manipulations of attention infl uence diff erent ERP 
components, demonstrating that diff erent mecha-
nisms of attention operate to produce the observed 
behavioral eff ects under diff erent conditions (see 
Chapter 11, this volume). Th ese ERP studies have 
inspired behavioral studies demonstrating that the 
details of the behavioral attention eff ects are indeed 
best explained by the existence of multiple mecha-
nisms of attention (see, e.g., Vogel et al.,   2005  ). 
Th us, the ability to monitor multiple processes with 
ERPs makes it possible to provide empirical evi-
dence against simplistic explanations of behavior 
that invoke a single mechanism.     

   Covert Monitoring   
 A fi nal ERP approach involves using ERPs as a 
means of “covertly monitoring” processing in situa-
tions in which behavioral output is uninformative, 
inapplicable, or unavailable. Th ere are three gen-
eral  situations in which this approach is applied: 
(1) assessing processing in individuals who cannot 
or will not make a behavioral response (e.g., infants, 
coma patients); (2) assessing processing under con-
ditions in which requiring a behavioral response 
might invalidate the task (e.g., monitoring the pro-
cessing of unattended stimuli); and (3) assessing 
processes that might not be evident in behavior 
(e.g., the processing of subliminal stimuli). In this 
section, we will provide examples of all three of 
these situations. 

 Behavioral methods used with infants almost 
always take advantage of the fact that infants tend to 
orient toward some types of stimuli (e.g., complex, 
dynamic, or novel stimuli) more than other types 
of stimuli (Brennan et al.,   1966  ). And if they exhibit 
greater looking times toward one category of stimuli 
than another, then this is evidence that they were 
able to distinguish between these categories (Spelke, 
  1985  ). Th e categories can be simple sensory catego-
ries (e.g., the presence versus absence of a fi ne pat-
tern) or complex conceptual categories (e.g., animal 
versus nonanimal). However, it is always possible 
that infants are able to make a particular discrimina-
tion even if they fail to exhibit any behavioral ori-
enting on the basis of this discrimination. Moreover, 
these techniques are diffi  cult to use prior to about 
4 months of age owing to poor motor control. 
Event-related potentials can be useful in these situa-
tions to determine whether the brain has made a 
given discrimination. 

 For many years, ERPs have been used in this way 
to determine whether newborn infants might be 
suff ering from hearing loss. Specifi cally, a rapid 
sequence of clicks is presented, and the amplitude 
and latency of the early brainstem evoked responses 
are used to determine whether the sensory response 
is abnormal (Stapells,   1989  ). Th e auditory MMN 
component has also been widely used to assess the 
ability of infants to make more complex perceptual 
discriminations, such as distinctions between pho-
nemes (see Chapter 6, this volume). Other compo-
nents have been used to assess higher-level aspects 
of visual processing in infancy, such as face percep-
tion, and even higher-level cognitive discrimina-
tions (see Chapter 17, this volume). It is generally 
easier to assess lower-level sensory processes than 
higher-level cognitive processes with ERPs, because 
the sensory processes can typically be assessed with-
out any kind of task. Higher-level processes are 
typically task-dependent, and it is diffi  cult to teach 
infants a task that will elicit these processes reliably. 
One can sometimes take advantage of spontaneous 
diff erences in processing between, for example, rare 
and frequent stimulus categories, but these sponta-
neous diff erences may habituate before enough 
trials have been acquired to obtain reliable averaged 
ERP waveforms. 

 Event-related potentials can also be used in indi-
viduals who are unable to make behavioral responses 
due to a medical condition. In amyotrophic lateral 
sclerosis, for example, ERPs have been used to create 
brain–computer interfaces that allow patients to 
communicate with their families and caregivers 
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1 (Silvoni et al.,   2009  ). Another recent example comes 
from coma research, where ERPs have been used 
to predict which patients are likely to recover 
(Fischer et al.,   2004  ). Th ere are also cases in which 
an individual might refuse to make a valid behav-
ioral response, such as a suspect in a in crime, and 
ERPs have been used to assess whether people have 
knowledge of an event that they are not admitting 
(e.g., Farwell & Donchin,   1991  ). 

 Another type of covert monitoring approach is 
used when the requirement to make a behavioral 
response might interfere with the processing of 
a task. Th e most obvious example of this arises in 
attention research, in which ERPs have been widely 
used to compare the processing of attended and 
unattended stimuli (see Chapter 11, this volume). 
Requiring a behavioral response for an unattended 
stimulus presumably creates an incentive to attend 
to the stimulus, which is problematic for the study 
of attention. However, because ERPs can be recorded 
just as easily for unattended stimuli as for attended 
stimuli, they can be used to assess the processing 
of stimuli for which there is absolutely no incentive 
to attend. 

 Th is approach has also been used extensively in 
language research (see Chapter 15, this volume). 
In studies of sentence comprehension, it is diffi  cult 
to assess the processing of each individual word by 
means of behavioral measures, because this would 
require interrupting the sentence for a response. 
Eye movement measures have often been used for 
this purpose in studies of reading, because the eye 
movements are a naturally occurring part of the 
reading process. However, the eye movements are 
still discrete events that occur some time after the 
eyes have landed on a given word, and they are 
applicable primarily in the context of written lan-
guage comprehension rather than spoken language 
comprehension. 

 Th e third variety of covert monitoring involves 
asking questions about processes that might not be 
evident in behavior. Th at is, the brain may engage in 
a given process and reach a specifi c result without 
that result reaching awareness or triggering a behav-
ioral response. Th e most obvious case of this arises 
in research on perception without awareness. By 
using ERPs, it is possible to determine how much 
information has been extracted from a stimulus that 
fails to reach awareness. For example, research has 
shown that a specifi c type of masking ( object substi-
tution masking ) does not eliminate the orienting 
of attention to a target stimulus, as indexed by 
the N2pc component (Woodman & Luck,   2003a  ), 

but it does impair the processes needed to generate 
an N400 diff erence between words that match 
versus mismatch a semantic context (Reiss & 
Hoff man,   2006  ). Th is pattern of results indicates 
that this variety of masking operates after early per-
ceptual processing but prior to semantic analysis. 
Similarly, stimuli that are associated with a given 
response will activate the preparation of that 
response, as indexed by the LRP, even if the subject 
is unaware of the stimulus and does not actually 
execute the response (Dehaene et al.,   1998  ).      

   Conclusions   
 Th e ERP technique provides a unique and highly 
informative perspective on brain processing, but 
like all techniques it suff ers from challenges, diffi  -
culties, and limitations. Th e goal of this chapter was 
to chronicle both the positive and negative sides of 
ERPs, exploring issues that are often unaddressed in 
the literature while providing a detailed set of strate-
gies that allow the technique to be optimally 
employed. We hope that these recommendations 
allow the reader to understand and avoid the down 
sides of ERP research while also adopting our view 
that the positives of ERP research outweigh the 
negatives.     
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 Notes     
   1  Th e negative peaks of the waveform are sometimes referred to 

as troughs; however, there is nothing special about whether 
the activity is positive or negative in polarity. Th erefore, we 
will refer to both the positive and negative defl ections in the 
waveform as peaks.  

   2  Th e necessity for summation across large groups of neurons 
to observe a scalp ERP has implications that are often 
neglected by researchers. First, the magnitude of an ERP will 
depend on both the size of the individual postsynaptic poten-
tials and the number of neurons that are active. Second, 
many neurons that are simultaneously active within a given 
cortical region may actually be doing very diff erent things, 
and an ERP component may therefore refl ect a mixture 
of diff erent neural responses. Bill Gehring suggested to us 
that recording the ERP waveform is analogous to measuring 
the number of cars crossing the San Francisco Bay Bridge 
at a given time of day: Th ese cars may have nothing in 
common except that many of their drivers are heading home 
for dinner. Th us, ERPs may be useful for answering broad 
questions about neural activity (analogous to asking when 
most people end their workday in San Francisco) and not as 
useful for answering narrow questions (analogous to asking 
where individual cars are going or what their occupants are 
doing).  
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1    3  Analogous eff ects can be seen for neural fi ring rates; for exam-

ple, the duration of a change in the fi ring rate of a typical 
neuron in visual cortex following a brief stimulus is typically 
at least 100 ms. Th is is presumably a result of PSPs that last at 
least 100 ms.  

   4  Th e claim that brain processes involve individual brain areas 
requires us to be a bit more specifi c about what we mean by 
the term  process , because much brain activity involves the 
interaction of multiple brain areas. We are using the term 
 process  to mean an elementary computation that might plau-
sibly occur within a single brain area (e.g., spatial fi ltering 
based on lateral inhibition within an area) rather than a mul-
tistep computation that likely involves the coordinated oper-
ation of multiple brain areas (e.g., retrieval of an item from 
memory).  

   5  It should be noted that these two problems are not this 
extreme in all cases. For example, if one measures the ampli-
tude or latency of the P3 peak when this component is much 
larger than all of the other components, then these measures 
will not be greatly distorted by the overlapping components. 
However, other shortcomings of peak measures still apply 
in this situation, and small diff erences between groups or 
conditions could easily refl ect diff erences in the overlapping 
components.          
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