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Abstract

Electromagnetic data collected using electroencephalography (EEG) and magnetoencephalography (MEG) are of central
importance for psychophysiological research. The scope of concepts, methods, and instruments used by EEG/MEG
researchers has dramatically increased and is expected to further increase in the future. Building on existing guideline
publications, the goal of the present paper is to contribute to the effective documentation and communication of such
advances by providing updated guidelines for conducting and reporting EEG/MEG studies. The guidelines also include
a checklist of key information recommended for inclusion in research reports on EEG/MEG measures.

Descriptors: Electrophysiology, Methods, Recording techniques, Data analysis, Good practices

Electrophysiological measures derived from the scalp-recorded
electroencephalogram (EEG) have provided a window into the
function of the living human brain for more than 80 years. More
recently, technical advancements allow magnetic fields associated
with brain function to be measured as well, resulting in a growing
research community using magnetoencephalography (MEG).
Although hemodynamic imaging and transcranial magnetic stimu-
lation have expanded the understanding of psychophysiological
processes considerably, electromagnetic measures have not lost
their importance, largely due to their unparalleled temporal reso-
lution. In fact, recent technological developments have fundamen-
tally widened the scope of methodologies available to researchers
interested in electromagnetic brain signals. At the time of writing,
the increased use of MEG as well as the development of powerful
new hardware and software tools have led to a dramatic growth in
the range of research questions addressed. With the growing reali-
zation that diverse electrical, magnetic, optical, and hemodynamic
psychophysiological methods are complementary rather than com-
petitive, attempts at multimodal neuroimaging integration are

growing. In addition, a wide spectrum of data recording, artifact
control, and signal processing approaches are currently used, some
of which are intimately known only to a small number of research-
ers. With these richer opportunities comes a growth in demands for
technical expertise. For example, there is much greater use of and
need for advanced statistical and other signal-processing methods,
both adapted from other fields and developed anew. At the same
time, the availability of “turn-key” recording systems used by a
wide variety of scholars has been accompanied by a trend of report-
ing less detail about recording and data analysis parameters. Both
developments are at odds with the need to communicate experi-
mental procedures, materials, and analytic tools in a way that
allows readers to evaluate and replicate the research described in a
published manuscript.

The goal of the present paper is to update and expand existing
publication guidelines for reporting on studies using measures
derived from EEG. If not otherwise specified, these guidelines also
apply to MEG measures. This report is the result of the collabora-
tive effort of a committee appointed by the Society for
Psychophysiological Research, whose members are listed as the
authors of this manuscript. Previous guideline publications and
committee reports have laid an excellent foundation for research
and publication standards in our field (Donchin et al., 1977; Picton
et al., 2000; Pivik et al., 1993). A recent paper by Gross et al.
(2013) provided specific recommendations and reporting guide-
lines for the recording and analysis of MEG data. The reader is
referred to these publications in addition to the present report. To
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facilitate reading and to assist in educating researchers early in
their careers, certain key points will be discussed in the present
document, despite having been extensively covered in previous
publication guidelines.

How To Use This Document

Publication guidelines and recommendations are not intended to
limit the ability of individual researchers to explore novel aspects
of electromagnetic data, innovative analyses, or new ways of illus-
trating results. Rather, the goal of this document is to facilitate
communication between authors and readers as well as editors and
reviewers, by providing guidelines for how such communication
can successfully be implemented. There will be instances in which
authors will want to deviate from these guidelines. That will often
be acceptable, provided that such deviations are explicitly docu-
mented and explained. To aid editors, reviewers, and authors, we
have compiled a checklist of key information required when sub-
mitting a research report on EEG/MEG measures. The checklist,
provided in the Appendix, summarizes central aspects of the
guidelines.

Guidelines

Hypotheses and Predictions

In most cases, specific hypotheses and predictions about the elec-
tromagnetic activity of interest should be provided in the introduc-
tion. Picton et al. (2000) offered helpful examples regarding the
presentation of such predictions and their relation to the scientific
rationale and behavioral constructs under study. This involves
making predictions about exactly how the electromagnetic index
will differ by condition, group, or measurement site, reflecting the
main hypotheses of the study. It is rarely sufficient to make a
general prediction that the measures will differ, without describing
the specific ways in which they are expected to differ. For example,
a manuscript might describe predicted differences in the amplitude
or latency of specific components of the event-related potential
(ERP) or event-related field (ERF), or differences between fre-
quency bands contained in EEG/MEG recordings. The predictions
should directly relate to the theories and previous findings
described in the introduction and describe, to the extent possible,
the specific components, time ranges, topography, electrode/sensor
sites, frequency bands, connectivity indices, etc., where effects are
predicted.

Participant Characteristics

The standards for obtaining informed consent and reporting on
human participants, consistent with the Helsinki Accords, the
Belmont Report, and the publication manual of the American
Psychological Association (APA, 2010), apply fully to electromag-
netic studies. It is well established that interindividual differences
in the physiological or psychological status of research participants
will affect electromagnetic recordings. In fact, such differences are
often the focus of a given study. Even in studies not targeting
interindividual differences, suitable indicators of participant status
should be reported, including age, gender, educational level, and
other relevant characteristics. The specifics of what to report may
vary somewhat with the nature of the sample, the experimental
question, or even the sociocultural context of the research.

In their ERP guidelines report, Picton et al. (2000) discussed
areas of importance regarding selection of participants for research

and reporting procedures. These include reporting the number of
participants, their sensory and cognitive status, and appropriate
information on health status. In addition, recent epidemiological
work and EEG/MEG research in clinical populations suggest that
for certain research questions it is useful to report additional infor-
mation on the sample. When relying on measures that are sensitive
to factors such as psychopathology or alcohol and substance use,
for example, additional screening procedures may be appropriate
even in studies involving nonclinical samples. Results of epidemio-
logical studies in the United States suggest that past-year and
lifetime prevalence rates for a mental disorder are approximately
25% and 46%, respectively (Kessler, Berglund et al., 2005;
Kessler, Chiu, Demler, Merikangas, & Walters, 2005). The rate of
current illicit drug use in the United States among 18- to 25-year-
olds is over 20%, and rates of binge and heavy alcohol use in 21-
to 25-year-olds approach 32% and 14%, respectively (SAMHSA,
2012). Among college students, who comprise a significant pro-
portion of research participants in the United States, most estimates
place the binge-drinking rate at 40%–50% (e.g., Wechsler &
Nelson, 2008). If screening is undertaken, authors should report the
method and measures used as well as all inclusion and exclusion
criteria.

The issue of matching of groups in clinical studies involving
electromagnetic data also warrants careful attention. It has long
been noted that matching on one or more characteristics may
systematically mismatch groups on other characteristics (e.g.,
Resnick, 1992). Thus, researchers should carefully consider not
only the variables on which to match their groups but the possible
unintended consequences of doing so. It may be that a single
comparison group cannot handle all relevant issues and that multi-
ple control groups are needed.

Recording Characteristics and Instruments

Evaluation, comparison, and replication of a given psycho-
physiological study depend heavily on the description of the
instrumentation and recording settings used. Many of the relevant
parameters are listed in Picton et al. (2000) as well as Gross et al.
(2013) for MEG, and the reader is referred to these publications
for a discussion of how to report on instrumentation. Here, we
recapitulate key information that needs to be provided and offer an
update on new requirements and recommendations pertaining to
recent developments in hardware and software.

Sensor types. The type of MEG sensor or EEG electrode should
be indicated, ideally accompanied by make and model. In addition
to traditional sensor types, recent developments in EEG sensor
technology include active electrodes. Active electrodes have cir-
cuitry at the electrode site that is designed to maintain good signal-
to-noise ratio. Electrode-scalp impedances are often of less concern
when using active electrodes, and authors may want to emphasize
this aspect when using a system that allows reporting impedance
values. For passive and active electrodes, the electrode material
should be specified (e.g., Ag/AgCl).

Two types of dry sensor technology have become more
widely used in recent years (Grozea, Voinescu, & Fazli, 2011).
Microspikes penetrate the stratum corneum (Ng et al., 2009), the
highly resistive layer of dead cells. Capacitive sensors (Taheri,
Knight, & Smith, 1994) rely on conductive materials, such as
rubber (Gargiulo et al., 2010), foam, or fabric (Lin et al., 2011).
Common to these dry sensor technologies is the challenge of rec-
ording the EEG over scalp regions covered by hair. Most previous
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applications with dry sensors have involved recordings from the
forehead and often have been in the context of research on brain-
computer interfaces. When using dry electrodes, the type and tech-
nology should be indicated clearly in the manuscript.

Sensor locations. Although MEG sensor locations are fixed rela-
tive to each other within a recording system, the position of the
participant’s head relative to the sensor should be reported along
with an index of error/variability of position measurement. When
reporting EEG research, electrode positions should be clearly
defined. Standard electrode positions include the 10-20 system and
the revision to a 10-10 system proposed by the American
Electroencephalographic Society (1994). This standard is similar to
the 10-10 system of the International Federation of Clinical
Neurophysiology (Nuwer et al., 1999). Oostenveld and Praamstra
(2001) proposed an extension of the 10-10 system, referred to as
the 10-5 system, in order to accommodate electrode arrays with
more than 75 electrode sites. An alternative electrode placement
system employs a description of the scalp surface based on geo-
desic (equidistant) partitioning of the head surface with up to 256
positions (e.g., Tucker, 1993), rather than the percentage approach
of the 10-20 and related systems. The electrode positions in this
system vary according to channel count, as the geodesic partitions
differ for different spatial frequencies and ensure regular spacing
between electrodes.

Regardless of the system used, a standard nomenclature should
be employed and one or more appropriate citations reported. If an
equidistant/geodesic placement system is used, the average dis-
tance between electrodes should be reported, and the coverage of
the head sphere should be described in relation to the 10-20 or
10-10 system. This information can be conveyed in the text or in a
figure showing the sensor layout. Ground and reference electrode
locations should be specified. For active electrode systems and
MEG recordings, the type and location of additional sensors used
to reduce ambient and/or subject noise should be indicated. For
example, the location of the so-called common mode sense or
similar reference electrode should be mentioned if an amplifier
system uses such an arrangement. In general, individual reference
electrodes are recommended over physically linked reference elec-
trodes (see Miller, Lutzenberger, & Elbert, 1991). Other reference
montages can be computed offline.

Spatial sampling. The relationship between the rate of
discretization (i.e., digital sampling) and accurate description of the
highest frequency of an analog, time-series signal (e.g., the EEG or
MEG waveform) is well known as the Nyquist theorem. This
theorem posits that signal frequencies equal to or greater than half
of the sampling frequency (i.e., the Nyquist frequency) will be
misrepresented. This principle of discretization also holds for sam-
pling in the spatial domain for EEG and MEG data, where the
signal is the voltage or field data across or above the scalp surface
(Srinivasan, Nunez, & Silberstein, 1998). Undersampling in the
spatial domain results in high-spatial-frequency features being mis-
taken for low-spatial frequency information.

In addition to the importance of spatial sampling density, spatial
coverage is critical. Traditionally, the head surface is not covered
inferior to the axial (horizontal) plane, particularly when using
10-20 EEG positions, whereas equidistant layouts are commonly
designed to provide more coverage of the head sphere. In many
contexts, especially for source estimation involving much or all of
the brain, it is important that the sensor montage extend inferior at
least to the equivalent of the axial plane containing F9/F10 in the

10-10 system. At issue is how well local activity from the ventral
aspects of the brain is represented. Inadequate spatial sampling can
result in a biased estimate of averaged-reference data (Junghöfer,
Elbert, Tucker, & Braun, 1999) and misinterpretation regarding the
underlying sources (Lantz, Grave de Peralta, Spinelli, Seeck, &
Michel, 2003). Authors should address these limitations, particu-
larly when reporting on topographical distributions of electromag-
netic data.

Measuring sensor locations. With the increased use of dense
sensor arrays and source estimation procedures, the exact location
of sensors for a given participant is of increasing importance.
Current methods for the determination of 3D sensor positions
include manual methods, such as measuring all intersensor dis-
tances with digital calipers (De Munck, Vijn, & Spekreijse, 1991),
or measuring a subset of sensors arrayed in a known configuration
and then interpolating the positions of the remaining sensors (Le,
Lu, Pellouchoud, & Gevins, 1998). Another group of methods
requires specialized equipment such as electromagnetic digitizers,
near-infrared cameras, ultrasound sensors, photographic images
acquired from multiple views (Baysal & Sengul, 2010; Russell,
Jeffrey Eriksen, Poolman, Luu, & Tucker, 2005), and electrodes
containing a magnetic resonance marker together with MR images
(e.g., Koessler et al., 2008). When 3D coordinates are reported, the
method for obtaining these parameters should be detailed and an
index of spatial variability or measurement error provided.

The resolution with which sensor positions can be measured
varies considerably, with a potentially strong impact on the validity
and reliability of source localization solutions. Under some circum-
stances, such measurement error contributes most of the source
localization error. At best, spatial localization methods are limited
largely by the accuracy of sensor position measurement, but
compare favorably to the spatial resolution provided by routine
functional magnetic resonance imaging (fMRI) procedures (Aine
et al., 2012; Miller, Elbert, Sutton, & Heller, 2007). Thus, including
the recommended information on measurement of sensor positions
is quite important in studies seeking discrete source estimation.

Amplifier type. Accurate characterization of signal amplitude is
dependent on many factors, one of which is an amplifier’s input
impedance. Amplifier systems differing in input impedance vary
drastically in their sensitivity to variations in electrode impedance
(Ferree, Luu, Russell, & Tucker, 2001; Kappenman & Luck, 2010).
Thus, authors are encouraged to report the input impedance of their
amplifiers. At minimum, the make and model of the recording
system should be indicated in the Methods section.

Impedance levels. If the impedance of the connection between the
electrode and the skin is high, this may increase noise in the data.
High impedances may also increase the incidence and amplitude of
electrodermal (skin) potentials related to sweat gland activity. Tra-
ditionally, researchers have addressed these issues by reducing
electrode-scalp impedance at each site to be equal to or less than a
given threshold (e.g., 10 kΩ). The impedance at a given electrode
and time point may be less important than the relationship between
electrode impedance and amplifier input impedance in rejecting
electrical noise, although sensitivity to skin potentials depends on
input impedance even when the amplifier is held constant
(Kappenman & Luck, 2010). In addition, the variability and range
of impedances across time points and electrodes may add noise to
the signal, impacting topographical and temporal information and
inferences about sources. EEG systems with active sensors have
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different requirements in terms of impedance and may have differ-
ent ways of reporting indices of data quality. Thus, no single
threshold for maximum acceptable electrode impedance can be
offered. Reporting should follow the recommendations of the
manufacturer. The use of amplifiers with a very high input imped-
ance also reduces the importance of matching impedance for spe-
cific sets of electrodes that will be compared, such as at
hemispherically homologous sites (Miller et al., 1991).

Obtaining impedances at individual electrodes below a target
threshold typically requires preparation (e.g., abrasion) of each
site, because the stratum corneum is highly resistive. When such
procedures are used, the method should be described. Electrode
impedances should be reported when appropriate, or an equivalent
signal quality index given when impedances cannot be obtained.
When using high-input impedance systems with passive electrodes,
information should be given about the range of electrode-scalp
impedances, the amplifier’s input impedance, and information
about how ambient recording conditions were controlled.

Recording settings. The settings of recording devices should be
reported in sufficient detail to allow replication. At minimum,
parameters should include resolution of the analog-to-digital con-
verter and the sampling rate. In addition, any online filters used
during data recording must be specified, including the type of filter
and filter roll-off and cut-off values (stated in dB or specifying
whether cut-off is the half-power or half-amplitude value; Cook &
Miller, 1992).

Stimulus and Timing Parameters

Timing. As noted in Picton et al. (2000), reporting the exact
timing of all stimuli and responses occurring during electromag-
netic studies is critical. Such information should be provided
in a fashion that allows replication of the sequence of events.
Required parameters include stimulus durations, stimulus-onset
asynchronies, and intertrial intervals, where applicable. Many
experimental control platforms synchronize stimulus presentation
relative to the vertical retrace of one of the monitors comprising the
system, unless otherwise specified. If used, such a linkage should
be reported and presentation times accurately indicated in multi-
ples of the video signal retrace (monitor refresh) rate.

When an aspect of the timing is intentionally variable (e.g.,
variable interstimulus intervals), then a uniform (rectangular) dis-
tribution of the time intervals is assumed unless otherwise
specified. The relative timing of trials belonging to different experi-
mental conditions should be specified, including any rules or
restrictions during randomization, permutation, or balancing. The
number of trials in each condition should be explicitly specified,
along with the number of trials remaining in each condition when
elimination of trials is used to remove artifacts, poor performance,
etc. (In many contexts, the number of trials per condition is a
primary factor affecting signal-to-noise ratio.) Information about
practice trials should also be provided. The total recording duration
should be specified along with the duration of rest breaks between
recording blocks, where applicable.

Stimulus properties. Replication of a given study is possible only
if the relevant parameters defining the stimuli are described. This
may include a description of the experimental setting in which the
stimuli are presented, including relevant physical and psychosocial
aspects of the participants’ environment. For instance, it may be
appropriate for some studies to report the experimenter’s gender,

the participants’ body posture, or the presence or absence of aux-
iliary instructions such as to avoid eye blinking during particular
time periods of the experiment. Other studies may require precise
information regarding ambient lighting conditions, or the size of
the recording chamber.

Ideally, examples of the stimuli should be provided in the
Methods section, especially when nonstandard or complex stimuli
are used. For visual stimuli, parameters may include stimulus size
and viewing distance, often together with the visual angles spanned
by the stimuli. Because of the strong impact of contrast and inten-
sity of a stimulus on the amplitude and latency of electromagnetic
responses, these parameters should be reported where applicable.
Different measures of contrast and luminance exist, but often lumi-
nance density in units of cd/m2 can be reported along with either a
measure of luminance variability across the experimental display
or an explicit measure of contrast, such as the Michelson contrast.
Reporting on stimulus color should follow good practices in the
respective area of research, which may include specifying CIE
coordinates. Additional requirements regarding the display device
may exist in studies focusing on color processing. In all instances,
the type of display should be reported along with the frame rate or
any similar parameter. For example, authors may report that a LED
screen of a given make and model with a vertical frame rate of
120 Hz was used. In studies that focus on higher-order processing,
it may suffice to specify approximate characteristics of stimulus
and display (e.g., “a gray square of moderate luminance,” “a red
fixation cross”).

Similarly, investigators examining responses to auditory stimuli
should report the intensity of the stimuli in decibels (dB). Because
the dB scale reflects a ratio between two values (not absolute
intensity), the report of dB values should include the specification
of whether this relates to sound pressure level (SPL), sensation
level (SL), hearing level (HL), or another operational definition.
When appropriate, the frequency content of the stimulus should be
reported along with measures of onset and offset envelope timing
and a suitable measure of the energy over time, such as the root
mean square. Paralleling the visual domain, the make and model of
the delivery device (e.g., headphones, speakers) should be speci-
fied. The procedure for intensity calibration should also be
reported. If this was adjusted for individual subjects, that procedure
should also be reported.

Electromagnetic studies with stimuli in other modalities (e.g.,
olfactory, tactile) should follow similar principles by defining the
nature, timing, and intensity of stimuli and task parameters, per
good practice in the respective field of research.

Response parameters. The nature of any response devices should
be clearly specified (e.g., serial computer mouse, USB mouse,
keyboard, button box, game pad, etc.). Suitable indices of
behavioral performance should be indicated, likely including
response times, accuracy, and measures of their variability.
Because computer operating systems differ in their ability to
support accurate response recording, reports may include this
information when appropriate.

Data Preprocessing

Data preprocessing commonly refers to a diverse set of pro-
cedures that are applied to the data prior to averaging or other
major analysis procedures. These procedures may transform the
data into a form that is appropriate for more generic computations
and eliminate some types of artifact that cannot be dealt with
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satisfactorily through averaging methods, spectral analysis, or
other procedures. The end product is a set of “clean” continuous
or single-trial records ready for subsequent analysis. Reports
should include clear descriptions of the methods used for each of
the preprocessing steps along with the temporal order in which
they were carried out. The following section considers preproc-
essing steps.

Transformation from A/D units into physical units. This step is
necessary for comparing data across experiments. Either the data
need to be presented in physical units (e.g., microvolts, femtotesla),
or waveforms presented in the paper should report a suitable com-
parison scale with respect to a physical unit.

Rereferencing. The reference issue is an important problem in
EEG studies, and aspects of it were also discussed above (see
Recording Characteristics and Instruments). In EEG research, a
different reference may be used for online recording and offline
analysis. For example, data can be recorded referenced to a spe-
cific electrode (e.g., left mastoid), and a different reference (such
as average mastoids, or average reference) can be computed
offline. Typically, this involves a simple linear transformation cor-
responding to adding or subtracting a particular waveform from
all the channels (unless a Hjorth or Laplacian reference system is
used, see Application of Current Source Density or Laplacian
Transformations). As data change substantially depending on the
reference method used, the type of reference used for online rec-
ording and offline analysis should be indicated clearly. When the
average of multiple sites is used as the reference, all the sites
should be clearly specified, even if they are not used as “active”
sites in the analyses.

Interpolation of missing data. Some EEG/MEG channels may
contain excessive artifacts and thus may not be usable. For
example, an electrode may detach during recording, or a connec-
tion may become faulty. The probability of such artifacts increases
with dense sensor arrays. It may nevertheless be preferable to
include data from missing channels in the analysis; for example, in
cases where the analysis software requires identical sensor layouts
for all participants. For this reason, problematic or missing data are
often replaced with interpolated data. Interpolation is a mathemati-
cal technique for estimating unobserved data, according to some
defined function (e.g., linear, sphere, spline functions, average of
neighbors), from those measured. Interpolation can be used to
estimate data between sensor locations (such as those used for
color-coded topographic maps) or to replace missing data at a given
sensor. For spatial interpolation, it is important to note that the
estimated data do not provide higher-density spatial content than
what is contained in the original data (Perrin, Pernier, Bertrand,
Giard, & Echallier, 1987). Moreover, when interpolation is used to
replace missing data, the limit to accuracy is a function of the
spatial frequency of the missing data and the number and distribu-
tion of sensors. That is, if missing data points are spatially contigu-
ous, and the data to be replaced are predominantly of high spatial
content, then it is likely that the estimated data are spatially aliased
and do not provide an accurate replacement. Publications should
report the interpolation algorithm used for estimating missing
channels or for spatial interpolation resulting in topographical
maps. Information should be provided as to how many missing
channels were interpolated for each participant. Often, information
about the spatial distribution of interpolated channels will be
required.

Segmentation. Most analysis methods, including traditional
cross-trial averages and spectral and time-frequency analyses, are
based on EEG/MEG segments of a specific length and a given
latency range with respect to an event. Although some data are still
recorded in short epochs, data are now more typically recorded in
a continuous fashion over extended periods of time and then seg-
mented offline into appropriate epochs. The time range used to
segment the data should be reported.

Baseline removal. ERP data are changes in voltage between
locations on the recording volume occurring over time. Similarly,
ERFs are changes in magnetic field strength. To quantify this
change, researchers often define a time period during which the
mean activity is to be used as an arbitrary zero value. This period
is called the “baseline” period. The mean value recorded during
this baseline period is then subtracted or divided from the rest of
the segment to result in a measure of change with respect to this
zero level. In most ERP/ERF studies, a temporally local baseline
value is computed for each recording channel. The choice of
baseline period is up to the investigators and should be appropri-
ate to the experimental design. The baseline period should be
specified in the manuscript and should ideally be chosen such
that it contains no condition-related differences. In addition, as
discussed in the section Results Figures, the baseline period
should be displayed in waveform plots. Alternative procedures
may be used to establish change with respect to a baseline,
including regression or filter-based methods. Authors should indi-
cate the method and the data segments used for any baseline pro-
cedures. Additional recommendations exist for baseline removal
with spectral or time-frequency analyses, as discussed in the
Spectral Analysis section.

Artifact rejection. There are many types of artifacts that can
contaminate EEG and MEG recordings, including artifacts gener-
ated by the subject (e.g., eye blinks, eye movements, muscle activ-
ity, and skin potentials) and artifacts induced by the recording
equipment or testing environment (e.g., amplifier saturation and
line noise). These artifacts are often very large compared to the
signal of interest and may differ systematically across conditions or
groups of subjects, making it necessary in many experiments to
remove the data segments with artifacts from the data to obtain a
clean signal for analysis. It should be specified whether artifacts
were rejected by visual inspection, automatically based on an algo-
rithm, or a combination of visual inspection and automatic detec-
tion. The algorithms used for automatic detection of artifacts
should be described in the paper (e.g., a moving window peak-to-
peak algorithm). It should also be stated whether thresholds for
automatic detection procedures were set separately for individual
subjects or channels of data. If any aspect of these procedures was
controlled by the experimenter (e.g., manual rejection or subject-
specific parameter settings), it should be indicated whether this was
done in a manner that was blind to experimental condition or
participant group. Unless otherwise specified, it is assumed that all
channels are rejected for a segment of data if an artifact is identified
in a single channel.

Importantly, because the number of artifacts may differ substan-
tially between experimental conditions or between groups of sub-
jects (e.g., some patient populations may exhibit more artifacts than
healthy comparison subjects), the number or percentage of trials
rejected for each group of subjects must be specified (especially if
peak amplitude measurement is used; see section below on meas-
urement procedures). It should be made clear to the reader whether
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the number of trials contributing to the averages after artifact rejec-
tion differs substantially across conditions or groups of subjects.

Artifact correction. It is often preferable and feasible to estimate
the influence of an artifact on the EEG or MEG signal and to
subtract the estimated contribution of the artifact, rather than reject-
ing the portions of data that contain artifacts. A number of correc-
tion methods have been proposed, including regression methods
(such as Gratton, Coles, & Donchin, 1983; Miller, Gratton, & Yee,
1988), independent component analysis (ICA; Jung et al., 2000),
frequency-domain methods (Gasser, Schuller, & Gasser, 2005),
and source-analysis methods (e.g., Berg & Scherg, 1994b). A
number of studies have investigated the relative merits of the
various procedures (e.g., Croft, Chandler, Barry, Cooper, & Clarke,
2005; Hoffmann & Falkenstein, 2008). By and large, most of these
studies have shown that correction methods are generally effective.
The major issues are the extent to which they might undercorrect
(leaving some of the artifact present in the data) or overcorrect
(eliminating some of the nonartifact activity from the data) and
whether such correction errors are inconsistent (e.g., larger for
sensors near the eyes).

Regardless of which artifact correction procedure is chosen, the
paper should provide details of the procedure and all steps used to
identify and correct artifacts so that another laboratory can repli-
cate the methods. For example, it is not sufficient to state “artifacts
were corrected with ICA.” Paralleling artifact rejection (above),
other necessary information includes whether the procedure was
applied in whole or in part automatically. If nonautomatic correc-
tion procedures were used, it should be specified whether the indi-
vidual performing the procedure was blind to condition, group, or
channel. In addition, a detailed list of the preprocessing steps
performed before correction (including filtering, rejection of large
artifacts, segmentation, etc.) should be described. If a statistical
approach such as ICA is used, it is necessary to describe the criteria
for determining which components were removed.

If a participant blinks or moves his/her eyes during the presen-
tation of a visual stimulus, the sensory input that reaches the brain
is changed, and ocular correction procedures are not able to com-
pensate for the associated change in brain-related processing. In
experimental designs where compliance with fixation instructions
is crucial (e.g., visual hemifield studies), it is recommended that
segments of data that include ocular artifacts during the presenta-
tion of the stimuli be rejected prior to ocular correction.

Offline filtering. Filters can be used to improve the signal-to-noise
ratio of EEG and MEG data. As filters lead to loss of information,
it is often advisable to do minimal online analog filtering and
instead use appropriately designed offline digital filters. In general,
both online and offline filters work better with temporally extended
epochs and therefore may be best applied to continuous than to
segmented data. This is particularly the case for high-pass filters
used to eliminate very low frequencies (drift) and for low-pass
filters with a very sharp roll-off. The type of filters used in the
analysis should be reported along with whether they were applied
to continuous or segmented data. It is not sufficient to simply
indicate the cut-off frequency or frequencies; the filter family
and/or algorithm should be indicated together with the filter order
and descriptive indices of the frequency response function. For
example, a manuscript may report that “a 5th order infinite impulse
response (IIR) Butterworth filter was used for low-pass filtering
on the continuous (nonsegmented data), with a cut-off frequency
(3 dB point) of 40 Hz and 12 dB/octave roll-off.” Other ways of

reporting filter characteristics are possible, but they should include
the filter family (e.g., Boxcar, Butterworth, Elliptic, Chebychev,
etc.) as well as information on the roll-off or steepness of the
transition in the filter response function (e.g., by indicating that the
roll-off was 12 dB/octave). The most common single index of a
filter’s frequency response function is the half-amplitude or half-
power cutoff (the frequency at which the amplitude or power is
reduced by 50%). The half-power and half-amplitude frequencies
are not the same, so as noted above it is important to indicate
whether the cutoff frequency specifies the half-amplitude (−6 dB)
point or the half-power (−3 dB) point (Cook & Miller, 1992; Edgar,
Stewart, & Miller, 2005).

Measurement Procedures

After preprocessing is completed, the data are typically reduced to
a much smaller number of dependent variables to be subjected to
statistical analyses. This often consists of measuring the amplitudes
or latencies of specific ERP/ERF components or quantifying the
power or amplitude within a given time-frequency range. Increas-
ingly, it involves multichannel analysis via principal component
analysis (PCA) or ICA, dipole or distributed source analysis,
and/or quantification of relationships between channels or sources
to evaluate connectivity. Choosing the appropriate measurement
technique for quantifying these features is important, and there are
a variety of measurement techniques available (some described
below; see Fabiani, Gratton, & Federmeier, 2007, Handy, 2005,
Kappenman & Luck, 2012b, Kiebel, Tallon-Baudry, & Friston,
2005, or Luck, 2005, for more information). The following guide-
lines are described primarily in the context of conventional, time-
domain ERP/ERF analyses, but many points apply to other
approaches as well.

Isolating components. Successful measurement requires care that
the ERP/ERF component of interest is isolated from other activity.
Even a simple experimental design will elicit multiple components
that overlap in time and space, and therefore it is usually important
to take steps to avoid multiple components contributing to a single
measurement. As a first step, researchers typically choose a time
window and a set of channels for measurement that emphasize the
component of interest. However, source-analysis procedures have
demonstrated that multiple components are active at a given sensor
site at almost every time point in the waveform (Di Russo,
Martinez, Sereno, Pitzalis, & Hillyard, 2002; Picton et al., 1999).
Many investigators have acknowledged this problem and have pro-
posed various methods for addressing it in specific cases (e.g.,
Luck, 2005). Methods for isolating a single component include
creating difference waves or applying a component decomposition
technique, such as ICA or spatiotemporal PCA, discussed in
the Principal Component Analysis and Independent Component
Analysis section (Spencer, Dien, & Donchin, 1999; for general
discussion of techniques for isolating components of interest, see
Kappenman & Luck, 2012a; Luck, 2005). The method for compo-
nent isolation used in a particular study should be reported. If no
such method is used, authors are encouraged to discuss component
overlap as a potential limitation. Most effective in separating
the sources of variance, when feasible, is an experimental design
that manipulates the overlapping components orthogonally (see
Kappenman & Luck, 2012b, for a description).

Description of measurement procedures. The measurement
process should be described in detail in the Method section. This
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includes specifying the measurement technique (e.g., mean ampli-
tude) as well as the time window and baseline period used for
measurement (e.g., “Mean amplitude of the N2pc wave was meas-
ured 175 to 225 ms poststimulus, relative to a −200 to 0 ms
prestimulus baseline period.”). A justification for the time window
and baseline period should be included (as described in more detail
below).

For measurement techniques that use peak values—such as
peak amplitude, peak latency, and adaptive mean amplitude, which
relies in part on the peak value—additional information about the
measurement procedures is helpful. First, the method used to
find the peak value should be specified, including whether the
peak values were determined automatically by an algorithm or
determined (in whole or in part) by visual inspection of the wave-
forms. If visual inspection was used, the manuscript should specify
whether the individual performing the inspection was blind to
condition, group, or channel information. It should also be stated
whether the peak was defined as the absolute peak or the local peak
(e.g., a point that was greater than the adjacent points even if the
adjacent points fell outside the measurement window—see Luck,
2005). It should also be stated whether the peak value was deter-
mined separately for each channel or whether the peak latency in
one channel was used to determine the measurement latency at the
other channels. Generally, it would be misleading to plot the scalp
or field distribution of a peak unless it was measured at the same
time at all sites.

Peak measures become biased as the signal-to-noise ratio
decreases (Clayson, Baldwin, & Larson, 2013), as scores will be
more subject to exaggeration due to overlapping noise. In principle,
the signal-to-noise ratio improves as a function of the square root of
the number of trials in an average. When analyzing cross-trial
averages, it is therefore problematic to compare peak values from
conditions or groups with significantly different numbers of trials.
Studies that rely on peak measures scored from averages (or other
measures that may be biased in a similar manner) should report the
number of trials in each condition and in each group of subjects.
This should include the mean number of trials in each cell, as well
as the range of trials included.

Acommon alternative to peak scoring is area scoring. In general,
area measures are less susceptible to signal-to-noise-ratio problems
resulting from few (or differing numbers of) trials. An area measure
is typically the sum or average of the amplitudes of the measured
points in a particular scoring window (after baseline removal).
However, the term area can be ambiguous, because the area of a
geometric shape can never be negative. For measurement techniques
that use area measures, it is recommended that the field adopt the
following terminology: positive area (area of the regions on the
positive side of the baseline); negative area (area of the regions on
the negative side of the baseline); integrated area (positive area
minus negative area); geometric area (positive area plus negative
area; this is the same as positive area preceded by rectification).

Inferences about magnitude and timing. Care must be taken in
drawing conclusions about the magnitude and timing of the under-
lying neural activity on the basis of changes in the amplitude and
latency of ERPs/ERFs. For example, a change in the relative ampli-
tudes or latencies of two underlying components that overlap in
time can cause a shift in the latency of scalp peaks (see Donchin &
Heffley, 1978; Kappenman & Luck, 2012a). Thus, a change in peak
amplitude does not necessarily imply a change in component mag-
nitude, and a change in peak latency does not necessarily imply a
change in component timing. As noted above, suitable methods for

isolating specific spatiotemporal processes assist in the interpreta-
tion of overlapping neural events and should be reported in suffi-
cient detail to allow evaluation and replication.

Measurement windows and electrode sites must be well
justified and avoid inflation of Type I error rate. EEG/MEG data
sets are extremely rich, and it is almost always possible to find
differences that are “statistically significant” by choosing measures
that take advantage of noise in the data, even if the null hypothesis is
true. Opportunities for inflation of Type I error rate (i.e., an increase
in false positives) almost always arise when the observed waveforms
are used to determine how the data are quantified and analyzed (see
Inferential Statistical Analyses). For example, if the time range and
sensor sites for measuring a component are chosen on the basis of the
timing and topographical distribution of an observed difference
between conditions in the same data set, this will increase the
likelihood that the difference will be statistically significant even if
the difference is a result of noise rather than a reliable effect.

Choosing time windows and sensor sites that maximize sensi-
tivity to real effects while avoiding this kind of bias is a major
practical challenge faced by researchers. This problem has become
more severe as the typical number of recording sites increased from
one to three in the 1970s to dozens at present. Fortunately, concep-
tual and data-driven approaches have been developed that make it
possible to select electrode sites and time windows in a way that is
both unbiased and reasonably powerful. An important guideline is
to provide an explicit justification for the choice of measurement
windows and sensor sites, ensuring that this does not bias results.

A variety of ways of selecting scoring windows and sites are
valid. In many cases, the best approach is to use time windows and
sensor sites selected on the basis of prior research. When this is not
possible, a common alternative approach is to create an average
across all participants and conditions and to use this information to
identify the time range and topographical distribution of a given
component. This is ordinarily an unbiased approach with respect to
differences between groups or conditions. However, care must be
taken if a given component is larger in one group or condition than
in another group or condition or if group or condition numbers
differ substantially. For example, Group A may have a larger P3
than Group B, and the average across Group A and Group B is used
to select the electrode sites for measuring P3 latency. If Groups A
and B differ in P3 scalp distribution, then a suboptimal set of sensor
sites would be used to measure P3 latency in Group B, and this
could bias the results. The issue of making scoring decisions based
on the data being analyzed is considered further in the Inferential
Statistical Analyses section.

Another approach is to obtain measures from a broad set of time
ranges or sensor locations and include this as a factor in the statis-
tical analysis. For example, one might measure the mean amplitude
over every consecutive 100-ms time bin between 200 and 800 ms
and then include time as a factor in the statistical analysis. If an
effect is observed, then each time window or site can be tested
individually, using an appropriate adjustment for multiple compari-
sons. A recent approach is to use cluster-based analyses that take
advantage of the fact that component and time-frequency effects
typically extend over multiple consecutive sample points and
multiple adjacent sensor sites (see, e.g., Groppe, Urbach, & Kutas,
2011; Maris, 2012).

Both descriptive and inferential statistics should be provided.
Reporting of results should include both descriptive and inferential
statistics (see Inferential Statistical Analyses). For descriptive
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statistics, the group-mean values for each combination of condition
and group should be provided, along with a measure of variability
(e.g., standard deviation, standard error, 95% confidence interval,
etc.). It is generally not sufficient to present inferential statistics
that indicate the significance of differences between means without
also providing the means themselves. These descriptive statistics
can be included in the text, a table, a figure, or a figure caption as
appropriate. Descriptive statistics should ordinarily be presented
prior to the inferential statistics. This is further discussed in the
Inferential Statistical Analyses section.

Results Figures

Electromagnetic data are multidimensional in nature, often
including dimensions of sensor channel, topography, or voxel,
time and/or frequency band, experimental condition, and group,
among others. As a result, particular efforts are necessary to
ensure their proper graphical representation on a journal page.
Documentation of data quality in most cases will require presen-
tation of a waveform or frequency spectrum in the manuscript. As
described in Picton et al. (2000) for ERP data, it is virtually man-
datory that figures be provided for the relevant comparisons. They
should include captions and labels with all information needed to
understand what is being plotted. Ideally, the set of figures in a
given paper will graphically convey both the nature of the
dependent variable (voltage, field, dipole source strength, fre-
quency, time-frequency, coherence, etc.) and the temporal and
spatial properties of the data, as they differ across experimental
conditions or groups. As a result, papers will typically have
figures highlighting time (e.g., line plots) or spatial distribution
(e.g., topographies).

Line plots (see Figure 1) often show change in a measure as a
function of time (e.g., amplitude or power of voltages or mag-
netic fields). Inclusion of line plots is strongly recommended for
ERP/ERF studies. It is recommended that waveforms be overlaid,
facilitating comparison across conditions, groups, sensors, etc.
This may sometimes involve presenting the same waveform
twice: for example, patients overlaid with controls for each con-
dition and each condition overlaid separately for patients and
controls. Figures should be clearly labeled with the spatial loca-
tion from which the data were obtained, such as a sensor, source

location, or a topographically defined group of sensors. A base-
line segment should be included in any data figure that depicts a
time course. This baseline segment should be of sufficient length
to contain a valid estimate of pre-event or postevent activity. The
time segment used as the baseline should be included in the
figure (see Data Preprocessing, above). In the case of time-
varying power or amplitude in a given frequency band (e.g.,
event-related (de)synchronization), the baseline segment should
contain at least the duration of two cycles of the frequency under
consideration (e.g., at least 200 ms of baseline are needed when
displaying time-varying 10 Hz activity) or the duration that cor-
responds to the time resolution of the specific analysis method
(e.g., the temporal full width at half maximum of the impulse
response).

Each waveform plot should include a labeled x axis with appro-
priate time units and a labeled y axis with appropriate amplitude
units. In most cases, waveforms should include a y-axis line at time
zero (on the x axis) and an x-axis line at the zero of the physical unit
(e.g., voltage). Generally, unit ticks should be shown, at sufficiently
dense intervals, for every set of waveforms, so that the time and
amplitude of a given deflection are immediately visible. Line plots
displaying EEG segments or ERPs also should clearly indicate
polarity, and information regarding both the electrode montage (e.g.,
32-channel) and reference (e.g., average mastoid) should be pro-
vided in the caption. Including this information in the caption is
important to facilitate readers comparing waveforms across studies,
which may use different references that contribute to reported
differences in the waveforms. The waveforms should be sufficiently
large that readers can easily see important differences among them.
Where difference waveforms are a standard in a given literature, they
may suffice to illustrate a given effect, but in most cases the corre-
sponding condition waveforms should be provided. Because dense
arrays of EEG and MEG sensors are increasingly used, it is often not
practical to include each sensor’s time-varying data in a given figure.
For most situations, a smaller number of representative sensors (or
sensor clusters) or another suitable figure with temporal information
will suffice (e.g., the root mean square). Spatial information related
to specific effects may be communicated with additional scalp
topographies, as described in the next section.

Scalp potential or magnetic field topographies and source plots
are typically used to highlight the spatial distribution of voltage,
magnetic fields, current/source densities, and spectral power,
among other measures. If the figure includes mapping by means of
an interpolation algorithm, such as that suggested by Perrin et al.
(1987), the method should be indicated. Interpolation algorithms
implemented in some commercial or open-source software suites
are optimized for smooth voltage topographies, leading to severe
limitations when mapping nonvoltage data or topographies con-
taining higher spatial frequencies (see Data Preprocessing for rec-
ommendations on interpolation). Paralleling the recommendations
for line plots, captions and labels should accompany topographical
figures, indicating the type of data mapped along with a key
showing the physical unit. In addition, the perspective should be
clearly indicated (e.g., front view, back view; left/right) when using
3D head models. For flat maps, clearly labeling the front/nose and
left/right and indicating the projection method in the caption are
important. The location of the sensors on a head volume or surface
should be visible, to communicate any differences between inter-
polation across the sensor array, versus extrapolation of data
beyond the area covered with sensors. Authors have increasingly
used structural brain images overlaid with functional variables
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Figure 1. Example of an ERP time series plot suitable for publication.
Note that the electrode location is indicated, and both axes are labeled with
physical units at appropriate intervals. The onset of the event (in this
example, a visual stimulus) is clearly indicated at time zero. Overlaying two
experimental conditions fosters comparison of relevant features. (In this
example, positive voltage is plotted “up.” Both positive up and negative up
are common in the EEG/ERP literature, and the present paper makes no
recommendation for one over the other.)
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derived from EEG and MEG. In many such cases, a key to relevant
anatomical regions (slice location or a reference area) shown
should be provided.

Connectivity figures and time-frequency plots are increasingly
employed to illustrate different types of time-frequency and con-
nectivity analyses. Although these figures will necessarily vary
greatly, inclusion of figures showing original data is recommended,
along with the higher-order analyses. Where possible, authors
should provide illustrations that maintain a close relationship to the
data and analyses performed. For example, results of connectivity
analyses carried out for scalp voltages should normally be
displayed on a scalp model and not on a standard brain. For time-
frequency figures (see Figure 2), a temporal baseline segment
should be included of sufficient length to properly display the
lowest frequency in the figure, as noted above. In general, many of
the recommendations discussed above for line plots and topo-
graphical figures apply to other figure types, and authors are
encouraged to apply them as appropriate.

Inferential Statistical Analyses

Data analysis is a particularly rich and rapidly advancing area in the
EEG/MEG literature. Because electromagnetic data are often mul-
tidimensional in nature, statistical analysis may pose considerable
computational demands. As noted in Picton et al. (2000), research-
ers must ensure that statistical analyses are appropriate both to the
nature of the data and to the goal of the study. Generally, statistical
approaches applied to EEG/MEG data fall into two categories: one
where data reduction of dependent variables to relatively small
numbers is accomplished on the basis of a priori assumptions, as
described above, and one where the number of dependent variables
to which inferential statistical testing is applied remains too large to
allow meaningful application of traditional statistical methods.
Various aspects of these two approaches are discussed below.
Approaches in which multivariate methods are used to reduce the
dimensionality of the data prior to statistical analysis are discussed
in the Principal Component Analysis and Independent Component
Analysis section.

Studies with preselected dependent variables. Even when sta-
tistical analyses are conducted on a limited number of dependent
variables that are defined in advance, authors must ensure the
appropriateness of the procedure for the data type that is to be
analyzed. Where assumptions of common statistical methods are
violated (e.g., normality, sphericity), it should be noted and an
adequate correction applied when available. For example, it is
expected that the homogeneity/heterogeneity of covariance in
within-subjects designs is examined and addressed by Greenhouse-
Geisser, Huynh-Feldt, or equivalent correction if the assumption of
sphericity is violated (Jennings, 1987) or that multivariate analysis
of variance (MANOVA) is undertaken (Vasey & Thayer, 1987).
Often, nonparametric statistical approaches are appropriate for a
given data type, and authors are encouraged to consider such
alternatives. For example, permutation tests and bootstrapping
methods have considerable and growing appeal (e.g., Maris, 2012;
Wasserman & Bockenholt, 1989). Concerns specific to studies of
group effects, as noted in Picton et al. (2000), include the impor-
tance of demonstrating that the dependent variable (e.g., an ERP
component, a magnetic dipole estimate) is not qualitatively differ-
ent as a function of group or condition. This is an obvious problem
when latencies or waveforms of components or spectral events
differ by group or condition. In these situations, authors should be
careful to ensure that their dependent variables are indeed measur-
ing the same phenomena or constructs across groups, conditions, or
brain regions.

Jackknife approaches have been specifically designed to
examine latency differences (Miller, Patterson, & Ulrich, 1998),
enhancing the signal-to-noise ratio of the measurement by averag-
ing across observations within a group (in n − 1 observations) and
assessing the variability using all possible n − 1 averages. These
and similar methods should be considered when latency differences
are of interest. Because jackknife methods are based on grand
means, they depend greatly on assumptions regarding variability
within conditions and groups and on the criterion used to identify
the latency of an event (e.g., 50% vs. 90% of an ERP peak value).
Thus, authors should report measures of variability as well as
indicate the criterion threshold and a rationale for its selection.

In studies designed to evaluate group differences, often as a
function of psychopathology or aging, participants may also differ
in their ability to perform a task. Task performance by healthy
young-adult comparison subjects may be more accurate and faster
than that by patients, children, or older participants. Assuming that
only electromagnetic data obtained under comparable conditions
are to be included in each average (e.g., correct trials only), it is not
unusual for psychometric issues concerning group differences in
performance to arise. Patient participants, for example, may require
more trials (and consequently a longer session) in order to obtain
as many correct trials as healthy comparison subjects. Because
analyzing sessions of varying durations in a single experiment risks
a variety of confounds, identifying and selecting a subset (and
equal number) of trials that occur at approximately the same time
point for each patient and their demographically matched compari-
son participant can help to address the issue. Statistical methods
that explicitly address group differences in mixed designs, or with
nested data in general, include multilevel models (Kristjansson,
Kircher, & Webb, 2007). These approaches allow researchers to
explicitly test hypotheses on the level of individuals versus groups
and separately assess different sources of variability, for instance,
regarding their respective predictive value. Researchers reporting
on multilevel models should indicate the explicit model used in
equation form.

Figure 2. Example of a time-frequency figure suitable for publication. The
figure shows a wide range of frequencies (vertical axis) to allow readers a
comparison of temporal dynamics in different frequency bands. The
vertical axis and the horizontal (time) axis are labeled with appropriate
physical units (a), and so is the color bar (b), which here indicates the power
change from baseline levels in percent. Hence, it is important that a
sufficiently long baseline segment (c) be shown on the plot.
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Explicit interactions supporting inferences. Hypotheses or
interpretations that involve regional differences in brain activity
should be supported by appropriate tests. For example, hemi-
sphere should be included as a factor in statistical analyses, if
inferences are made about lateralized effects. In general, such
inferences are not justified when the analysis has essentially
involved only a simple-effects test for each sensor, voxel, or
region of interest. Simple-effects tests may be appropriate for
exploring an interaction involving hemisphere but are not them-
selves a sufficient basis for inferences about lateralization. This
example of an effect of hemisphere generalizes to inferences
regarding region-specific findings. If two groups or conditions
differ in region X but not in region Y, a test for a Group × Region
or Condition × Region interaction is usually needed in order to
infer that the effect differs in regions X and Y. It may seem logi-
cally sufficient to show that the effect in X differs from zero, and
the effect in Y does not. In such an analysis, however, it is essen-
tial to demonstrate that the confidence intervals do not overlap.
Even if the means of X and Y fall on opposite sides of zero, it is
possible that their confidence intervals overlap.

Scaling of topographic effects. Because topography is a tradi-
tional criterion for defining ERP and ERF components, topo-
graphic differences can suggest differences in neural generators.
However, even varying amplitudes of a single, invariant neural
source can produce Location × Condition interactions in statistical
analyses, despite their fundamentally unchanged topography.
McCarthy and Wood (1985) brought this issue to the attention of
the literature and recommended scaling of the data to avoid the
problem, using a normalization of the amplitude of the scalp dis-
tribution. This recommendation was widely endorsed for a time.
Urbach and Kutas (2002, 2006), however, showed that scaling may
eliminate overall amplitude differences between distributions
without altering the topography. They argued convincingly that the
recommended scaling should not be performed routinely, because
it does not resolve the interpretive problem of the source of elec-
tromagnetic data. They also demonstrated that standard baseline
subtraction further compromises the scaled data.

Although such scaling is no longer recommended, the interpre-
tative problem remains. This issue does not affect inferences that
are confined to whether two scalp topographies differ, which may
suffice in many experimental contexts. The issue arises, however,
when the goal is to make an inference about whether underlying
sources differ. Generally, formal source analysis may be needed to
address such a question, rather than relying solely on analyses in
sensor space.

Handling of baseline levels. Even the routine removal of baseline
differences between groups, conditions, and recording sites can
potentially be problematic. First, whether to remove baseline vari-
ance by subtracting baseline levels or by partialing them out is
often not obvious, and the choice is rarely justified explicitly.
Second, baseline activity may be related to other activity of inter-
est. If groups, conditions, or brain regions differ at baseline,
removal of baseline levels may inadvertently distort or eliminate
aspects of the phenomenon of interest (discussed below). It is
therefore recommended that any baseline differences between
groups or conditions be examined, where appropriate. Third, base-
line removal can be particularly problematic for some types of
brain source localization analyses. If a source estimation algorithm
attempts to identify a source based on the spatial pattern of scalp-
recorded signal intensities, but those values have been adjusted by

removal of site-specific baselines, the topography of the scalp
signals will in some cases no longer represent the original topog-
raphy of the source. Urbach and Kutas (2002) discussed this issue
in detail as it applies to normalization of topographies, and their
critique of baseline removal applies to source analysis as well.
Authors are encouraged to assess the robustness of any observed
effects against baseline variations and scaling, where appropriate,
and to document these steps in the manuscript.

Analytic circularity. A recent controversy in the hemodynamic
neuroimaging literature (e.g., Kriegeskorte, Simmons, Bellgowan,
& Baker, 2009; Lieberman, Berkman, & Wager, 2009; Viviani,
2010; Vul, Harris, Winkielman, & Pashler, 2009) applies as well to
electromagnetic data. When two groups or conditions are com-
pared, and one group or condition is used to define key aspects of
the analysis such as the latency window, frequency band, or set of
voxels or sensors (topography) for scoring, this approach can bias
the results. Resampling methods, replication, and basing scoring
decisions on independent data sets can help to avoid this problem.
Patterns of results that are contrary to the bias may be accepted as
well, providing a particularly conservative test (e.g., Engels et al.,
2007).

Psychometric challenges. Electromagnetic measurement is
subject to the same psychometric considerations as are other
types of measurement, yet issues of task matching, measure
reliability, item discriminability, and general versus differential
deficit (see Chapman & Chapman, 1973) are often not acknowl-
edged in this literature. These issues go well beyond basic con-
cerns about reliability and validity. For example, given two
measurements that differ in reliability yet reflect identical effect
sizes, it is generally easier to find a difference with the less noisy
measure, suggesting a differential deficit when none may be
present. It also is the case that noise in measuring a covariate
will tend to lead to underadjustment for the latent variable
measured by the covariate (Zinbarg, Suzuki, Uliaszek, & Lewis,
2010). Evaluating the relationship between an independent
variable and a dependent variable can be further complicated
if a third variable shares variance with either the independent or
dependent variable. For example, two groups of subjects may
not be ideally matched on age. Even if the discrepancy is
not large, the difference may be statistically significant. Age-
related changes in electromagnetic activity can occur. Thus,
partialing out shared variance provided by the third variable (e.g.,
age) may not be an option, as the resulting partialed variables
may no longer represent the intended construct or phenomenon
(Meehl, 1971; Miller & Chapman, 2001). These issues can be
particularly difficult to address in clinical or developmental
research where random assignment to group is not an option, and
groups may differ on variables other than those of interest. Often,
explicit modeling of the different effects at different levels may
represent a quantitative approach to addressing these issues
(Tierney, Gabard-Durnam, Vogel-Farley, Tager-Flusberg, &
Nelson, 2012).

Studies with massive statistical testing. Electromagnetic
data sets increasingly involve many sensor locations or voxels,
time points, or frequency bands and, essentially, massively par-
allel significance testing. Recent developments in statistical meth-
odology have led to specific procedures to treat such data sets
appropriately. The methods may involve calculation of permuta-
tion or bootstrapped distributions, without assuming that the data
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are uncorrelated or normally distributed (Groppe et al., 2011;
Maris, 2012; Mensen & Khatami, 2013). When using such
methods, it is recommended that authors report the number of
random permutations or a suitable quantitative measure of the
distribution used for thresholding, along with the significance
threshold employed. Because many variants of massively
univariate testing exist, the algorithm generating the reference
distribution should be indicated in sufficient detail to allow
replication.

Effect sizes. Increasing attention is being paid to effect size and
statistical power, beyond the traditional emphasis on significance
testing. Effect sizes may be large yet not very useful, or small but
theoretically or pragmatically important (Hedges, 2008). The
growing attention to effect size, while overdue, can be overdone.
First, there is no consensus about what constitutes a “large” or a
“small” effect across diverse contexts, although Cohen (1992) pro-
vided a commonly cited set of suggestions. Second, effect size is
not always important to the research question at hand. In many
inferential contexts, the size of the effect is not as important as
whether groups or conditions differ reliably, as a basis for inferring
whether they are from the same population. Third, there is often
little information on which to base a prediction about how large an
effect size will be. On the other hand, underpowered studies appear
quite commonly, including in the psychophysiology literature.
Small-N studies are generally limited to finding large effects.
Whether that is acceptable in a given case is rarely discussed.

In summary, effect size is often but not always an important
issue. When it is important, it should be addressed explicitly. Effect
sizes obtained in other contexts rarely suffice to justify an assump-
tion of an effect size anticipated in a given study. Unless a model is
employed to make a point prediction of effect size, in most cases
what should be discussed is how small an effect a study should be
powered to find, not merely what size effect may be likely.

Spectral Analyses

Changes in the spectral properties of raw waveforms during task
performance are prima facie properties of EEG and MEG—they
are obvious when visually inspecting the ongoing electromagnetic
time series or spatial topography. Given its salience even with basic
recording setups, the oscillatory character of EEG/MEG and the
relationship between different types of oscillations and mental
processes have been the focus of pioneering work in EEG (Berger,
1929; in English in 1969) and MEG research (Cohen, 1972). The
present discussion will focus on time-domain spectral analyses, but
these comments generally apply to spatial spectra as well.

Subsequent to the publication of guidelines for recording and
quantitative analysis of EEG (Pivik et al., 1993), the availability of
powerful research tools and the increasing awareness that spectral
analysis can provide rich information about brain function have
led to a sharp increase in the number of scholars interested in
spectral properties of electromagnetic phenomena (e.g., Voytek,
D’Esposito, Crone, & Knight, 2013). Many recent approaches
capitalize on phase information, often used to compute metrics of
phase coherence and phase synchrony across trials, time points, or
channels. Variables that are reflective of some concept of causality
or dependence across spatial location in source or sensor space
often are tied to frequency-domain or time-frequency-domain
analyses and are therefore discussed in this section as well. Present
comments supplement the guidelines presented in Pivik et al.
(1993). More recent discussions (Herrmann, Grigutsch, & Busch,

2005; Keil, 2013; Roach & Mathalon, 2008) provide additional
resources regarding frequency and time-frequency analyses.

Frequency-domain analyses: Power and amplitude. The fre-
quency spectrum of a sufficiently long data segment can be
obtained with a host of different methods, with traditional Fourier-
based methods being the most prevalent. These methods are
applied to time-domain data (where data points represent a tempo-
ral sequence) and transform them into a spectral representation
(where data points represent different frequencies), called the fre-
quency domain. Both the power (or amplitude) and phase spectrum
of ongoing sine waves that model the original data may be identi-
fied in the frequency domain. Most authors use Fourier-based
algorithms for sampled, noncontinuous data (discrete Fourier
transform, DFT; fast Fourier transform, FFT), the principles of
which are explained in Pivik et al (1993; see also Cook & Miller,
1992). Many different implementations of Fourier algorithms exist,
defined, for example, by the use of tapering (in which the signal is
multiplied with a symmetrical, tapered window function to address
distortions of the spectrum due to edge effects), padding (in which
zeros, data, or random values are appended to the signal, e.g., to
achieve a desired signal duration), and/or windowing (in which the
original time series is segmented in overlapping pieces, the spec-
trum of which is averaged according to specific rules). These steps
should be clearly described and the relevant quantities numerically
defined. For example, the shape of the tapering window is typically
identified by the name of the specific window type. Popular taper
windows are Hann(ing), Hamming, Cosine (square), and Tukey.
Nonstandard windows should be mathematically described, indi-
cating the duration of the taper window at the beginning and end of
the function (i.e., the time it takes until the taper goes from zero to
unit level and vice versa). The actual frequency resolution of the
final spectrum should be specified in Hz. This is particularly critical
when using averaging techniques with overlapping windows, such
as the popular Welch-Periodogram method, frequently imple-
mented in commercial software for spectral density estimation.
These procedures apply multiple overlapping windows to a time-
domain signal and estimate the spectrum for each of these
windows, followed by averaging across windows. As a result, the
frequency resolution is reduced, because shorter time windows are
used, but the signal-to-noise ratio of the spectral estimates is
enhanced. Researchers using such a procedure should indicate the
type, size, and overlap of the window functions used.

Another important source of variability across studies relates to
the quantities extracted from Fourier algorithms and shown in
figures and means. Some authors and commercial programs stand-
ardize the power or amplitude spectrum by the signal duration or
some related variable, to enable power/amplitude comparisons
across studies or across different trial types. Other transformations
correct for the symmetry of the Fourier spectrum, for example, by
multiplying the spectrum by two. All such transformations that
affect the scaling of phase or amplitude/power should be reported
and a reference to the numerical recipes used should be given.
Importantly, the physical unit of the final power or amplitude
measure should be given. When using commercial software, it is
not sufficient to indicate that the spectrum was calculated using a
particular software package; the information described above needs
to be provided.

Fourier methods model the data as a sum of sine waves. These
sine waves are known as the “basis functions” for that type of
analysis. Other basis functions are used in some non-Fourier-based
methods, such as nontrigonometric basis functions implemented in
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half-wave analysis, for example, where the data serve as the basis
function, or in wavelet analysis. In a similar vein, autoregressive
modeling of the time series is often used to determine the spectrum.
Any such transform should be accompanied by mathematical
specification of the basis function(s) or an appropriate reference
citation. It is important to note that any waveform, no matter how
it was originally generated, can be deconstructed by frequency-
domain techniques. The presence of spectral energy at a particular
frequency does not indicate that the brain is oscillating at that
frequency. It merely reflects the fact that this frequency would be
required to reconstruct the time-domain waveform, for example, by
combining sine waves or wavelets. Consequently, conclusions
about oscillations in a given frequency band should not be drawn
simply by transforming the data into the frequency domain and
measuring the amplitude in that band of frequencies. Additional
evidence is necessary, as discussed in the following paragraphs.

Frequency-domain analyses: Phase and coherence. At any
given time, an oscillatory signal is at some “phase” in its cycle,
such as crossing zero heading positive. The phase of an oscillatory
signal is commonly represented relative to a reference function,
typically a sine wave of the same frequency. It is common to
assume a reference function that crosses zero heading positive at
some reference time, such as the start of an epoch, or stimulus
onset, and to describe the difference in phase between the data time
series and the reference time series as a “phase lag” of between 0
and 360 degrees or between 0 and 2π radians. Phase and phase lag
are also used when two signals from a given data set are compared,
whether or not they have the same frequency.

As with spectral power, the phase at a given frequency for a
given data segment can be extracted from any time series. When
presenting a phase spectrum, authors should detail how the phase
information was extracted, following the same steps as indicated
above for power/amplitude. Because the reference function is typi-
cally periodic, phase cannot be estimated unambiguously. For
example, an oscillation may be regarded as lagging behind a half
cycle or being advanced a half cycle relative to the reference
function, because these two lags would lead to the same time series
if the data were periodic. This is typically addressed by so-called
unwrapping of the phase. If used, the method for phase unwrapping
should be given.

Spectral coherence coefficients can be regarded as correlation
indices defined in the frequency domain. They are easily calculated
from the Fourier spectra of multiple time series, recorded, for
example, at multiple sensors or at different points in time. Correctly
reporting the extraction of coherence values may follow the steps
for spectral power as described above. Authors using coherence or
synchrony measures to address spatial relationships should indicate
how they have addressed nonspecific effects such as effects of the
reference sensor, volume conduction, or deep dipolar generators,
which may lead to spurious coherence between sensors because the
generators affect multiple sites (Nolte et al., 2004). Several algo-
rithms have been proposed to address this problem (e.g., Stam,
Nolte, & Daffertshofer, 2007) and should be considered by authors.
Coherence and intersite synchrony may be better addressed at the
source level than at the sensor level, but then information should be
included regarding how the source-estimating algorithm addresses
the shared-variance problem.

Time-frequency analyses. Spectral analyses as discussed above
cannot fully address the issue of overlapping and rapidly changing
neural oscillations during behavior and experience. Generally, the

methods above are appropriate only to the extent that the spectral
properties of the signal are stable throughout the analyzed interval.
Time-frequency (TF) analyses have been developed to handle more
dynamic contexts (Tallon-Baudry & Bertrand, 1999). They allow
researchers to study changes in the signal spectrum over time. In
addition to providing a dynamic view of electrocortical activity
across frequency ranges, the TF approach is sensitive to so-called
induced oscillations that are reliably initiated by an event but are
not consistently phase-locked to it. To achieve this sensitivity,
single trials are first transformed into the time-frequency plane and
then averaged. TF transformation of the time-domain averaged data
(the ERP or ERF) will result in an evolutionary spectrum of the
time- and phase-locked activity but will not contain induced
oscillations, which were averaged out. As a consequence, the
order of averaging steps, if any, should be specified. If efforts
are undertaken to eliminate or reduce the effect of the ERP or ERF
on the evolutionary spectrum, for example, by subtracting the
average from single trials, this should be indicated, and any effects
of this procedure should be documented by displaying the
noncorrected spectrum. The sensitivity of most TF methods to
transient, nonoscillatory processes including ocular artifacts
(Yuval-Greenberg, Tomer, Keren, Nelken, & Deouell, 2008) has
led to recommendations to analyze a sufficiently wide range of
frequencies and display them in illustrations. This recommendation
should be followed particularly when making claims about the
frequency specificity of a given process.

The Fourier uncertainty principle dictates that time and fre-
quency cannot both be measured at arbitrary accuracy. Rather,
there is a trade-off between the two domains. To obtain better
resolution in the frequency domain, longer time segments are
needed, reducing temporal resolution. Conversely, better time reso-
lution comes at the cost of frequency resolution. Methods devel-
oped to address this challenge include spectrograms, complex
demodulation, wavelet transforms, the Hilbert transform, and many
others.

Providing or citing a mathematical description of the procedure
and its temporal and spectral properties is recommended. In most
cases, this will be supplied by a mathematical formulation of the
basis function (e.g., the sine and cosine waves used for complex
demodulation, the parameters of an autoregressive model, or the
equation for a Morlet wavelet). Typically, the general procedures
are adapted to meet the requirements of a given study by adjusting
parameters (e.g., the filter width for complex demodulation; the
window length for a spectrogram). These parameters should be
given together with their rationale. The time and frequency sensi-
tivity of the resulting function should be specified exactly. For
example, the frequency resolution of a wavelet at a given frequency
can be indicated by reporting the full width at half maximum
(FWHM) of this wavelet in the frequency domain. If multiple
frequencies are examined, resulting in an evolutionary spectrum,
the relationship between analytic frequencies and their varying
FWHM should be reported.

Paralleling frequency-domain analyses, windowing procedures
should be specified along with relevant parameters such as the
length of the window used. This is particularly relevant for pro-
cedures that aim to minimize artifacts at the beginning and end of
the EEG/MEG segment to be analyzed. Methods that use digital
filters (complex demodulation, event-related desynchronization/
event-related synchronization [ERD/ERS], Hilbert transform, etc.)
or convolution of a particular basis function (e.g., wavelet analyses)
lead to distortions at the edges of the signal, where the empirical
time series is not continuous. Even when successfully attenuating
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these effects (e.g., by tapering, see above), the validity of these
temporal regions for hypothesis testing is compromised, so they
should generally not be considered as a dependent variable. Seg-
ments that are subject to onset/offset artifacts or tapering should
also not be used in a baseline. Therefore, the temporal position of
the baseline segment with respect to the onset/offset of the time
segment should be indicated. In the same vein, the baseline
segment typically cannot be selected to lie in close temporal prox-
imity to the onset of an event of interest, because of the temporal
uncertainty of the TF representation, which may change as a
function of frequency. Reporting the temporal smearing at the
lowest frequency included in the analysis helps readers to assess
the appropriateness of a given baseline segment. To facilitate cross-
study comparisons, the type of baseline adjustment (subtraction,
division, z-transform, dB-transform, etc.) should be specified and
the physical unit displayed in figures.

Analyses of phase over time or across recording segments
have led to a very productive area of research in which authors
are interested in coupling/dependence among phase and ampli-
tude values at the same or different frequencies, within or
between brain regions. Many indices exist that quantify such
dependencies or interactions in the time domain as well. More
recently, inferred causality and dependence approaches have been
increasingly used to identify or quantify patterns of connectivity
(Greenblatt, Pflieger, & Ossadtchi, 2012). For instance, Granger
causality algorithms have been used to index directed dependen-
cies between electromagnetic signals (Keil et al., 2009). Path
analysis, structural equation modeling, graph theory, and methods
developed for hemodynamic data (e.g., dynamic causal modeling)
can readily be applied to electromagnetic time series. Paralleling
coherence and synchrony analyses (above), such measures should
be described in sufficient detail to allow replication. New algo-
rithms and implementations should be accompanied by extensive,
accessible documentation addressing aspects of reliability and
validity.

Source-Estimation Procedures

Source-estimation techniques are increasingly used to show that a
set of sensor-space (voltage or magnetic field) data is consistent
with a given set of intracranial generator locations, strengths, and
in some methods orientations. As with other neuroimaging
methods, these techniques cannot provide direct and unambigu-
ous evidence about underlying neural activity, such as that the
recorded data were actually generated in a given brain area. A
wealth of different approaches exists to estimate the intracranial
sources underlying the extracranial EEG and MEG recordings.
These are known as estimated solutions to the “inverse prob-
lem”—inferring the brain sources from remote sensors. (The
“forward solution” refers to the calculation of sensor-space data
based on given source-space configurations and volume conduc-
tor models). The EEG and MEG inverse problem is
underdetermined; that is, the generators of measured potentials
and fields cannot uniquely be reconstructed without further con-
straints (Hämäläinen & Ilmoniemi, 1984; von Helmholtz, 1853).
Thus, source localization methods provide a model of the internal
distribution of electrical activity, which should be described. The
specific model assumptions, including the constraints chosen by
the researcher, should be reported. A mathematical description or
a reference to a publication providing such a description should
be provided for the steps involved in the source estimation pro-
cedure, as outlined below.

Choice and implementation of the head model. All source-
estimation approaches rely on a source and a conductivity model of
the head. The source model describes the location, orientation, and
distribution of possible intracranial neural generators (e.g., gray
matter, cerebellum). The conductivity model describes the conduc-
tivity configuration within the head that defines the flow of
extracellular currents generated by an active brain region, which in
combination with intracellular currents eventually leads to meas-
urable scalp potentials or magnetic fields. For any given source and
conductivity model, a lead field (i.e., the transfer matrix) can be
computed specifying the sensitivity of a given sensor to a given
source (e.g., Nolte & Dassios, 2005). The simplest common con-
ductivity model employed in EEG research is a spherical model
that describes three to four concentric shells of tissues (brain and/or
cerebrospinal fluid [CSF], skull, and scalp), with each tissue
volume having homogeneous conductivities in all directions.
Because conductivities and thickness of CSF, skull, and scalp do
not affect magnetic fields in concentric spherical models, a simple
sphere with homogenous conductivity is the easiest model for
MEG.

Although simple or concentric spherical models with uniform
conductivity assumptions are only rough approximations of realis-
tic conditions, they tend to be feasible and computationally effi-
cient (Berg & Scherg, 1994a). At some cost in computation time
and in some cases some cost in anatomic estimates, more realistic
models can be generated, with varying resolutions. As more real-
istic models are employed (e.g., restricting the source model to the
gray matter), more constraints are considered in the lead field, thus
restricting the number of possible source solutions. An atlas head
model, based on geometries of different tissues from population
averages, or individual source and conductivity models, based on
individual magnetic resonance imaging (MRI)/ computed tomog-
raphy (CT) data, can be derived. In these cases, a detailed descrip-
tion of the structural images (including acquisition, resolution,
segmentation, and normalization parameters) and their transforma-
tion into head models is strongly recommended. The potentially
high spatial accuracy attainable for individual source/conductivity
models should be considered in the context of the limited spatial
accuracy affecting other important variables such as sensor posi-
tion measurements. With less precision, but at far lower cost, the
individual head surface can be mapped, for example, with the same
equipment that maps sensor locations. To describe the geometries
and properties (such as conductivity) of each tissue, boundary
element (BEM), finite element (FEM), or finite difference (FDM)
methods can be employed, with each model type having specific
strengths and weaknesses, which should be discussed in the manu-
script (Mosher, Leahy, & Lewis, 1999). Source-estimation soft-
ware (especially commercially available programs) often provides
multiple source and volume conductor models. The conductivity
model should be clearly specified and should include (a) the
number of tissue types, including their thickness where appropri-
ate; (b) the conductivity (directional or nondirectional) values of
each tissue; (c) the method (BEM, FEM, or FDM) if it is a realistic
model; and (d) how the sensor positions (such as the average
position or positions from individual data) are registered to the
head (volume conductor) model. The source model should include
the location, orientation, and distribution of the sources.

Description of the source-estimation algorithm. Once source
and conductivity models are established, one of two major groups
of estimation algorithms is used: focal or distributed source
models.
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Focal source models (sometimes referred to as dipole models)
typically assume that a single or small number of individual dipolar
sources—with overall fewer degrees of freedom than the number of
EEG/MEG sensors—can account for the observed data (Scherg &
Von Cramon, 1986). Estimates from this approach depend on many
a priori assumptions (or models) that the user adopts, such as
number, rough configuration, and orientation of all active sources,
and the segment of data (time course) to be modeled. Once a user
establishes a model, a search for the residual source freedoms such
as location, orientation, and time course of the source generator(s)
is performed, and a solution is established when a cost function is
minimized (e.g., the residual variance). A solution can therefore
suffer from the existence of local minima. Thus, it is generally
advisable that any solution derived from a particular model be
tested repeatedly for stability, through repeated runs using the same
model parameters but with different starting points. It is recom-
mended that the manuscript describe how stability was assessed. It
is important that the model parameters, including the starting con-
ditions and the search method, be specified along with quality
indices such as residual variance or goodness-of-fit.

Distributed source methods (in contrast to focal source models)
assume that the source locations are numerous and distributed
across a given source volume such as the cortical surface or gray
matter (Hauk, 2004). The number, spatial density, and orientation
of the sources should be specified in the manuscript. The goal is to
determine the active sources, with their magnitudes and potentially
their orientations. Again, additional assumptions are necessary to
select a unique solution. A common assumption is the L1 or L2
minimum norm (least amount of overall source activity or energy,
respectively) assumption, but many other assumptions can be
employed (such as smoothness in 3D space). Once an assumption
is adopted, the user should specify how this assumption is imple-
mented in the solution. Often this step is linked to regularization of
the data or the lead field, in which the presence of noise or prag-
matic mathematical needs are addressed. The type and strength of
regularization should not differ across experimental conditions or
groups and should be reported together with an appropriate metric
describing its influence on the data.

Spatial filtering is most often implemented as algorithms that
involve a variant of so-called beamforming, in which spatial filters
are constructed to capture the specific contribution of a given
source location to the measured electrical or magnetic field and
suppress contributions from other source locations. This approach
differs from the algorithms outlined above, as cost functions or
fitting the data are not normally involved in beamforming.
However, spatial filtering approaches also depend on norms or a
priori assumptions. Inherent assumptions of beamforming include
a suppression of synchronous activity occurring at different loca-
tions. Authors should mention such assumptions and discuss their
implications for a given data set. Beamforming depends greatly on
the accuracy of the source and conductivity models (Steinstrater,
Sillekens, Junghoefer, Burger, & Wolters, 2010), which should be
specified in detail, as discussed above. Many types of beamforming
exist (Huang et al., 2004), and the exact type used should be math-
ematically described or a reference to a full description given.

Several points mentioned by Picton et al. (2000) should be
briefly highlighted here given their growing importance, as source
estimation becomes more common and methods for doing it more
varied. Source estimation can be performed on grand-average data,
but use on individual participant data is often advisable. Options

include using grand-average source estimates as starting points for
source estimation done on individual subjects and using different
signals for estimating different sources. An explicit rationale
should be provided for any such strategy. In many cases, evidence
of the reliability (including operator-independence) of the locali-
zation should be given, with appropriate figures provided illustrat-
ing the variability of the source estimate. The accuracy of a
technique may vary across cortical locations (e.g., sulci versus gyri;
deep versus superficial sources). Such limitations should be noted,
particularly when reporting deep or subcortical sources. Some
methods may have desirable properties under ideal conditions,
many of which may however not be met in a given study using
methodology presently available. To document the validity of a
given source estimation approach, it is therefore not sufficient to
refer to previous studies of the accuracy of a given technique unless
the conditions of the present study are comparable (e.g., signal-to-
noise ratio, number and position of sensors, availability of single-
subject structural MRI scans).

Principal Component Analysis and Independent
Component Analysis

PCA. Principal component analysis has a long history in EEG/
MEG research. Its recommended use is described in detail in Dien
(2010), Donchin & Heffley (1978), and Picton et al. (2000).
Spatial, temporal, and combined variants are often used (Tenke &
Kayser, 2005). The structure and preprocessing of the EEG/MEG
data submitted to PCA should be described. Comments in the next
section about preprocessing for ICA apply for the most part to PCA
as well. The specific PCA algorithm used should be described,
including the type of association matrix as well as whether and how
rotation was applied. Initial PCA and subsequent rotation are sepa-
rate steps, and both should be described (e.g., “PCA followed by
varimax rotation were employed”). In addition, the decision rule
for retaining versus discarding PCA components should be
provided.

ICA. Independent component analysis refers not to a specific
analysis method but a family of linear decomposition algorithms.
It has been brought to the EEG/MEG literature much more
recently than PCA and is increasingly used for biosignal analysis.
Assuming a linear superposition of (an unknown number of)
signals originating from brain and nonbrain sources, the aim of
ICA in multichannel EEG/MEG data decomposition is typically
to disentangle these source contributions into maximally inde-
pendent statistical components (Makeig, Jung, Bell, Ghahremani,
& Sejnowski, 1997; Onton, Westerfield, Townsend, & Makeig,
2006). ICA is now frequently used to attenuate artifacts in EEG/
MEG recordings (see artifact correction section above) and, more
recently, to identify and distinguish signals from different brain
sources. Compared to PCA, ICA solutions do not require a rota-
tional postprocessing step to facilitate interpretation, as independ-
ence imposes a more severe restriction than orthogonality (the
latter requires second-order statistical moments, the former
includes higher-order moments). For the same reason, however,
ICA decompositions can be computationally demanding. Intro-
ductions to ICA can be found in Hyvärinen, Karhunen, and Oja
(2001) and Onton et al. (2006).

Various ICA algorithms and implementations are available.
They have been reported to produce generally similar results, but
they estimate independence in different ways. The use of different
algorithms may also entail different practical considerations.
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Among the most popular ICA algorithms for EEG and MEG analy-
sis are infomax ICA (Bell & Sejnowski, 1997) and fastICA
(Hyvärinen, 1999). Several implementations exist in different com-
mercial and open source software packages. Since default param-
eters may vary between implementations and algorithms, the
algorithm and software implementation should be reported in the
manuscript. Moreover, all parameter settings should be reported.
Some iterative ICA algorithms may not converge to the same solu-
tion after repeated decomposition of the same data. It is therefore
necessary to confirm the reliability of the ICA components
obtained. Dedicated procedures have been developed to do so.
They should be applied and described (Groppe et al., 2009).

EEG/MEG data are typically of high dimensionality and can be
arranged in various different ways before being submitted to ICA.
As with PCA, the structure and preprocessing of the EEG/MEG
data submitted to ICA should be detailed in the manuscript. The
most common data arrangement is a 2D Channels × Time Points
matrix structure. Group, subject, condition, etc., may be higher-
order dimensions within which the channel dimension is nested.
Using ICA this way, the aim is to achieve maximally temporally
independent time series. Regarding the first dimension (channels)
in such an approach, it is usually good practice to use all recorded
EEG channels (returning good-quality voltage fluctuations) for the
decomposition. If some channels are excluded from ICA training,
this should be reported.

Although dense-array EEG/MEG recordings provide higher-
dimensional data and thus in principle enable a more fine-
grained decomposition, higher-dimensionality decomposition is
computationally more demanding. If the dimensionality of dense-
array EEG\MEG data is reduced before ICA decomposition, this
should be specified, and the model selection justified. Good results
for the separation of some basic EEG features have been achieved
for low-density EEG recordings as well. The second dimension
submitted to the decomposition, that is, the time points, may be for
example the raw voltage time series as originally recorded. It
could also represent the preprocessed (e.g., high-pass filtered,
rereferenced) raw data, a subset of the raw data after the removal of
particular artifacts (e.g., severe, nonrepetitive artifacts), or a subset
of the raw data where a particular brain activity pattern is expected
to dominate (e.g., the intervals following some events of interest).
For most algorithms it is necessary that the second dimension be
significantly larger than the first to achieve a satisfactory decompo-
sition result and a reliable solution (Onton et al., 2006). Accord-
ingly, which and how many data points are selected for ICA should
be described.

ICA decomposition quality depends strongly on how well the
data comply with the statistical assumptions of the ICA approach.
How ICA decomposition quality can be evaluated is a matter of
ongoing discussion (Delorme, Palmer, Onton, Oostenveld, &
Makeig, 2012; Groppe et al., 2009; Onton et al., 2006). One statis-
tical assumption of the ICA approach is the covariance stationarity
of the data, which is for example violated by very low-frequency
artifacts such as drift. Accordingly, the application of a high-pass
filter, de-trending, or de-meaning of the input data is recommended
to improve ICA reliability and decomposition quality. These steps
should be described. A key feature for the evaluation of decompo-
sition quality is the dipolarity of the inverse weights characterizing
the independent components. Infomax ICA appears to outperform
other algorithms in this respect (Delorme et al., 2012), and dipolar
ICA components have been found to be more reliable than
nondipolar ones (Debener, Thorne, Schneider, & Viola, 2010).
Given that dipolar projections are biophysically plausible assump-

tions for spatially circumscribed brain generators (Onton et al.,
2006), these two criteria, component dipolarity and component
reliability, should be carefully considered in ICA outcome
evaluation.

The main ICA outcome, the unmixing weights, may be
regarded as a set of spatial filters, which can be used to identify
one or several statistical sources of interest. It is important to
recognize that sign and magnitude of the raw data are arbitrarily
distributed between the resulting temporally maximally independ-
ent component activations and the corresponding spatial projec-
tions (inverse weights). Accordingly, the grouping of inverse
weights across subjects and the grouping of component activa-
tions (or component activation ERPs or ERFs) across subjects
into a group average representation require some form of nor-
malization and definition of polarity. Alternatively, a back-
projection of components of interest to the sensor level solves the
sign and magnitude ambiguity problem and produces signals in
original physical units and polarity (e.g., microvolts or
femtotesla). If taken, these procedural steps should be docu-
mented in the manuscript.

The above-mentioned approach requires that the single-subject
or single-session EEG/MEG data be submitted to ICA. Accord-
ingly, the decomposition results will differ by subject to some
extent, requiring some form of clustering to identify which com-
ponents reflect the same process. How the component selection
process was guided should be specified. For some biological arti-
facts such as eye blinks, eye movements, or electrocardiac activity,
this grouping or clustering process can be achieved efficiently and
in an objective procedure by the use of templates (Viola et al.,
2009). Here, the inverse unmixing weights of independent compo-
nents reflect the projection strength of a source to each EEG/MEG
channel and thus can be plotted as a map. The spatial properties of
these maps can guide component interpretation, as they should
show some similarity to the EEG/MEG features a user might be
interested in. The identification of ICA components reflecting brain
signals should be based not only on spatial information (inverse
weights) but also on temporal information (ICA activations). How
much (spatial, temporal, or a combination of both) variance or
power in the raw signal or the time- or frequency-domain averaged
signal a component explains can be determined and can guide the
ICA component selection step. All thresholds used for selection
should be indicated. Given that the assumption of an equal number
of sensors and sources is likely violated in ICA decompositions of
real EEG/MEG data, authors should specify how many compo-
nents representing a given brain activity pattern were considered
per subject.

Multimodal Imaging/Joint Recording Technologies

Diverse measures of brain function, including noninvasive
neuroimaging such as EEG, MEG, and fMRI, have different
strengths and weaknesses and are often best used as complements.
EEG and MEG can readily be recorded simultaneously. Increas-
ingly, EEG and MEG analysis is being augmented with per-subject
structural MRI recorded in separate sessions. The concurrent
recording of electromagnetic and hemodynamic measures of
brain activity is a rapidly evolving field. Electromagnetic and
hemodynamic measures are also sometimes recorded from the
same subjects performing the same tasks in separate sessions.

Different imaging modalities reflect different aspects of brain
activity (e.g., Nunez & Silberstein, 2000), which makes their inte-
gration difficult, although the fact that they are substantially
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nonredundant also makes their integration appealing. As described
above for single-modality data, hypotheses must be clearly stated
and all preprocessing steps fully described for each measure used.
A number of specific issues should also be considered in
multimodal imaging studies. Importantly, practical issues of
subject safety apply (Lemieux, Allen, Franconi, Symms, & Fish,
1997; Mullinger & Bowtell, 2011). Therefore, only certified hard-
ware should be used for EEG recordings in an MRI system, and the
hardware should be specified in the manuscript.

Artifact handling should be detailed. EEG data recorded during
MRI are severely contaminated by specific types of artifacts, not
covered above (Data Preprocessing), such as the cardioballistic
artifact. How these artifacts are handled determines signal quality.
The processing of MRI-specific and MRI-nonspecific artifacts
should be described. This includes a description of the software
used, the order of the signal processing steps taken, and the param-
eter settings applied.

Single-modality results should be reported. Multimodal inte-
gration is a quickly evolving field, and new analysis procedures
are being developed that aim to optimize the integration or fusion
of information from different modalities (Huster, Debener,
Eichele, & Herrmann, 2012). The underlying rationale is that to
some extent different modalities capture different aspects of the
same or related neural processes. Given that the amount of
overlap between modalities is to a large extent unknown, and
given that signal quality from multimodal recordings may be
compromised, it is generally necessary to report single-modality
findings in addition to results reporting multimodality integration.
For EEG-fMRI integration, for example, EEG or ERP-alone find-
ings should typically be described, illustrated, and statistically
analyzed in addition to the multimodal integration analysis,
which might be based on the same (e.g., ERP) or related (single-
trial EEG) signals.

Application of Current Source Density or Laplacian
Transformations

As discussed in Source-Estimation Procedures, for any given dis-
tribution of EEG/MEG data recorded at the surface of the head
there exists an infinite number of possible source configurations
inside the head. Another theorem, however, maintains that the
potential of magnetic field distribution on any closed surface,
which encloses all the generators, can be determined uniquely from
the extracranial potential or magnetic field map. In MEG, this
procedure can, for example, be applied to project the magnetic field
distribution of a subject-specific sensor configuration onto a stand-
ard configuration. Because there are no neural sources between the
scalp and the cortical surface, mapping procedures can be applied
to EEG data to estimate the potential distribution on the cortical
surface (Junghöfer, Elbert, Leiderer, Berg, & Rockstroh, 1997).
This mathematical transformation called “cortical mapping” (CM)
can compensate for the strong blurring of the electrical potential
distribution, which is primarily a consequence of the low conduc-
tivity of the skull. Magnetic fields, in contrast, are almost unaf-
fected by conductivity properties of intervening tissues. MEG
topographies thus reveal higher spatial frequencies, convergent to
the CM topography, and sensor, scalp, and cortex MEG topogra-
phies do not differ much. The uniqueness of CM does not depend
on adequate modeling of conductivities or the head shape. Inad-
equate modeling will, however, give rise to an inaccurate estima-

tion of the cortical surface potential. Authors should therefore
describe the model parameters (e.g., assumed conductivities) in the
manuscript.

An alternative to cortical mapping that also compensates for the
spatial low-pass filter effect reflecting the signal transition between
cortex and scalp in EEG is the current source density (CSD) cal-
culation that is based on the spatial Laplacian or the second spatial
derivative of the scalp potential (Tenke & Kayser, 2005). Because
the reference potential, against which all other potentials are meas-
ured, is extracted by the calculation of a spatial gradient—that is,
constant addends are removed—both CM and CSD measures are
independent of the reference choice. They constitute “reference-
free” methods—convergent with reference-free MEG. As a result,
CM and CSD may serve as a bridge between reference-dependent
scalp potentials and the estimation of the underlying neural gen-
erators. Many implementations exist, and authors should indicate
the software and parameter settings used to calculate CM and CSD
maps.

Importantly, CM and CSD transformations of EEG data and
also projections of MEG topographies are unique and accurate if
and only if the electrical potential or magnetic field is known for
the entire surface surrounding all neural generators. The signal,
however, can only be measured at discrete locations covering much
less than the entire head. Data at other locations are then estimated
through interpolation, in order to compute the CM or the CSD. In
the context of CSD mapping, the most common interpolation func-
tions are three- or two-dimensional spline functions, which meet
the physical constraint of minimal energy. Moreover, in contrast to
the method of nearest neighbors, which has often been used in the
past, these functions take the complete distribution at all sensors
into consideration. There exist a large set of such functions that all
meet this criterion and interpolate the topography in different ways,
resulting in different projection topographies. Thus, authors should
indicate the interpolation functions that were used. In the same
vein, the CM or CSD algorithms applied in a given study should be
reported, for example, by providing a brief mathematical descrip-
tion together with a reference to the full algorithm or by describing
the full mathematical formulation.

Interpolation-dependent effects are smaller with less interpola-
tion, that is, with denser sensor configurations (Junghöfer et al.,
1997). Since CM and CSD act as spatial high-pass filters for EEG
topographies, these projections are quite vulnerable to high-spatial-
frequency noise (e.g., noise with differential effects on neighboring
electrodes). Even if dense-array electrode configurations (e.g., 256-
sensor systems) may spatially oversample the brain-generated
aspect of the scalp topography, such configurations may reduce
high-spatial-frequency noise as a consequence of spatial averaging.
Thus, although CM and CSD procedures can be applied with sparse
electrode coverage, estimates of CM and CSD measures gain sta-
bility with increasing electrode density. Accordingly, authors are
encouraged to address the specific vulnerability of CM and CSD to
high-spatial-frequency noise with respect to the specific electrode
configuration used in a given study.

Single-Trial Analyses

Given recent advances in recording hardware and signal processing
as described in the previous sections, researchers have increasingly
capitalized on information contained in single trials of electromag-
netic recordings. Many such applications exist now, ranging from
mapping or plotting routines that graphically illustrate properties of
single trials (voltage or field, spatial distribution, spectral phase or
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power) to elaborate algorithms for extracting specific dependent
variables (e.g., component latency and amplitude) from single-trial
data. Recent advances in statistics such as multilevel modeling
have also enabled analyses of electromagnetic data on the single
trial level (Zayas, Greenwald, & Osterhout, 2010).

Because single-trial EEG and MEG typically have low signal-
to-noise ratios, authors analyzing such data are encouraged to
address the validity and reliability of the specific procedures
employed. The type of temporal and/or spatial filters used is critical
for the reliability and validity of latency and amplitude estimates of
single-trial activity (e.g., De Vos, Thorne, Yovel, & Debener, 2012;
Gratton, Kramer, Coles, & Donchin, 1989). Thus, preprocessing
steps should be documented in particular detail when single-trial
analyses are attempted. Where multivariate or regression-based
methods are used to extract tendencies inherent in single-trial data,
measures of variability should be given. Where feasible, readers

should be enabled to relate the extracted data to an index with
greater signal-to-noise ratio such as a time-domain average (ERP or
ERF) or a frequency spectrum. To foster replication, a research
report should include a mathematical description of the algorithm
employed to extract single-trial parameters or a reference to a paper
where such a description is provided.

Conclusion

As discussed in the introductory section, the present guidelines
are not intended to discourage the application of diverse and
innovative methodologies. The authors anticipate that the spec-
trum of methods available to researchers will increase rapidly in
the future. It is hoped that this document contributes to the effec-
tive documentation and communication of such methodological
advances.
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Appendix

Authors’ Checklist

The checklist is intended to facilitate a brief overview of important guidelines, sorted by topic. Authors may wish to use it prior to
submission, to ensure that the manuscript provides key information.

Hypotheses YES NO

Specific hypotheses and predictions for the electromagnetic measures are described in the introduction

Participants YES NO

Characteristics of the participants are described, including age, gender, education level, and other relevant characteristics

Recording characteristics and instruments YES NO

The type of EEG/MEG sensor is described, including make and model

All sensor locations are specified, including reference electrode(s) for EEG

Sampling rate is indicated

Online filters are described, specifying the type of filter and including roll-off and cut-off parameters (in dB, or by indicating
whether the cut-off represents half-power/half amplitude)

Amplifier characteristics are described

Electrode impedance or similar information is provided

Stimulus and timing parameters YES NO

Timing of all stimuli, responses, intertrial intervals, etc., are fully specified; ensure clarity that intervals are from onset or offset

Characteristics of the stimuli are described such that replication is possible

Description of data preprocessing steps YES NO

The order of all data preprocessing steps is included

Rereferencing procedures (if any) are specified, including the location of all sensors contributing to the new reference

Method of interpolation (if any) is described

Segmentation procedures are described, including epoch length and baseline removal time period

Artifact rejection procedures are described, including the type and proportion of artifacts rejected

Artifact correction procedures are described, including the procedure used to identify artifacts, the number of components removed,
and whether they were performed on all subjects

Offline filters are described, specifying the type of filter and including roll-off and cut-off parameters (in dB, or by indicating
whether the cut-off represents half-power/half amplitude)

The number of trials used for averaging (if any) is described, reporting the number of trials in each condition and each group of
subjects. This should include both the mean number of trials in each cell and the range of trials included

Measurement procedures YES NO

Measurement procedures are described, including the measurement technique (e.g., mean amplitude), the time window and baseline period,
sensor sites, etc.

For peak amplitude measures, the following is included: whether the peak was an absolute or local peak, whether visual inspection or
automatic detection was used, and the number of trials contributing to the averages used for measurement

An a priori rationale is given for the selection of time windows, electrode sites, etc.

Both descriptive and inferential statistics are included

Statistical analyses YES NO

Appropriate correction for any violation of model assumptions is implemented and described (e.g., Greenhouse-Geisser, Huynh-Feldt, or
similar adjustment)

The statistical model and procedures are described and results are reported with test statistics, in addition to p values

An appropriate adjustment is performed for multiple comparisons

If permutation or similar techniques are applied, the number of permutations is indicated together with the method used to identify a
threshold for significance
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Figures YES NO

Data figures for all relevant comparisons are included

Line plots (e.g., ERP/ERF waveforms) include the following: sensor location, baseline period, axes at zero points (zero physical units
and zero ms), appropriate x- and y-axis tick marks at sufficiently dense intervals, polarity, and reference information, where appropriate

Scalp topographies and source plots include the following: captions and labels including a key showing physical units, perspective of
the figure (e.g., front view; left/right orientation), type of interpolation used, location of electrodes/sensors, and reference

Coherence/connectivity and time-frequency plots include the following: a key showing physical units, clearly labeled axes,
a baseline period, the locations from which the data were derived, a frequency range of sufficient breadth to demonstrate
frequency-specificity of effects shown

Spectral analyses YES NO

The temporal length and type of data segments (single trials or averages) entering frequency analysis are defined

The decomposition method is described, and an algorithm or reference given

The frequency resolution (and the time resolution in time-frequency analyses) is specified

The use of any windowing function is described, and its parameters (e.g., window length and type) are given

The method for baseline adjustment or normalization is specified, including the temporal segments used for baseline estimation,
and the resulting unit

Source-estimation procedures YES NO

The volume conductor model and the source model are fully described, including the number of tissues, the conductivity values of each
tissue, the (starting) locations of sources, and how the sensor positions are registered to the head geometry

The source estimation algorithm is described, including all user-defined parameters (e.g., starting conditions, regularization)

Principle component analysis (PCA) YES NO

The structure of the EEG/MEG data submitted to PCA is fully described

The type of association matrix is specified

The PCA algorithm is described

Any rotation applied to the data is described

The decision rule for retaining/discarding PCA components is described

Independent component analysis (ICA) YES NO

The structure of the EEG/MEG data submitted to ICA is described

The ICA algorithm is described

Preprocessing procedures, including filtering, detrending, artifact rejection, etc., are described

The information used for component interpretation and clustering is described

The number of components removed (or retained) per subject is described

Multimodal imaging YES NO

Single-modality results are reported

Current source density and Laplacian transformations YES NO

The algorithm used and the interpolation functions are described

Single-trial analyses YES NO

All preprocessing steps are described

A mathematical description of the algorithm is included or a reference to a complete description is provided
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