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Abstract

ERPs are widely and increasingly used to address questions in psychophysiological research. As discussed in this

special issue, a renewed focus on questions of reliability and stability marks the need for intuitive, quantitative

descriptors that allow researchers to communicate the robustness of ERP measures used in a given study. This

report argues that well-established indices of internal consistency and effect size meet this need and can be easily

extracted from most ERP datasets, as demonstrated with example analyses using a representative dataset from a

feature-based visual selective attention task. We demonstrate how to measure the internal consistency of three

aspects commonly considered in ERP studies: voltage measurements for specific time ranges at selected sensors,

voltage dynamics across all time points of the ERP waveform, and the distribution of voltages across the scalp. We

illustrate methods for quantifying the robustness of experimental condition differences, by calculating effect size

for different indices derived from the ERP. The number of trials contributing to the ERP waveform was

manipulated to examine the relationship between signal-to-noise ratio (SNR), internal consistency, and effect size.

In the present example dataset, satisfactory consistency (Cronbach’s alpha> 0.7) of individual voltage

measurements was reached at lower trial counts than were required to reach satisfactory effect sizes for differences

between experimental conditions. Comparing different metrics of robustness, we conclude that the internal

consistency and effect size of ERP findings greatly depend on the quantification strategy, the comparisons and

analyses performed, and the SNR.

Descriptors: Reliability, Event-related potentials, Cronbach’s alpha, Internal consistency, Effect size, Signal-to-noise ratio

ERPs represent large-scale brain electric fields that are time-

locked to an event. They are noninvasively recorded from the

scalp and have been used to investigate brain processes for more

than half a century (Luck, 2014). ERPs have also been discussed

as potential biomarkers for a variety of psychiatric and neurolog-

ical disorders (Foti, Kotov, & Hajcak, 2013; Light & Swerdlow,

2015; Luck et al., 2011; Perez, Swerdlow, Braff, N€a€at€anen, &

Light, 2014) and as indices of individual differences in nonclini-

cal samples (Anokhin et al., 2001; Cohen & Polich, 1997). An

ERP can be regarded as a spatiotemporal matrix, often recorded

from many scalp locations, and containing time-varying voltage

information at high temporal resolution. Numerous indices can

be extracted from this spatiotemporal matrix using different

quantification methods. Some indices are univariate in nature,

such as the latency of a given component, the mean amplitude

across a time window, or area measurements of the amplitude for

a given component at a given sensor location (Kappenman &

Luck, 2012). Others are multivariate, such as the topographical

distribution of voltages across the scalp or the temporal sequence

of components in a waveform (Dien, Spencer, & Donchin, 2004;

Spencer, Dien, & Donchin, 1999). Given their rich potential for

answering questions in psychophysiology, potential clinical

applications, and the myriad techniques used to quantify ERP

indices, a discussion of their psychometric properties is becom-

ing increasingly important.

Recently, discussions about replicability in the cognitive and

neural sciences have arisen, particularly regarding the reliability of

ERP measures (Keil et al., 2014). The need for establishing the

psychometric properties of ERP measures (such as reliability) is

obvious when authors are interested in quantifying interindividual

differences, especially in the context of clinical and translational

work. Quantitative indices of robustness and consistency, however,

are also desirable for experimental studies comparing ERP metrics

under different conditions, typically using within-participant com-

parisons. The reliability of a given ERP effect depends on a number

of factors, including the recording hardware and sensors (affecting
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the overall signal quality in the raw EEG), how the dependent vari-

able was derived from the spatiotemporal ERP matrix (the quantifi-

cation method), and how much error variance (noise) affected the

desired ERP signal, which can be measured by computing the

signal-to-noise ratio (SNR). Another point affecting replicability

of experimental reports is the sensitivity of a given ERP index to

differences between conditions, readily quantified by computing

effect size. The range of acceptable SNRs, effect sizes, and reliabil-

ity indices will vary by study goals, experimental paradigm, and

the specific ERP component examined in the study.

In the present report, we address the issue of reliability of ERP

measures not by suggesting recommended parameters for ERP

studies, but by providing example analyses of SNR, internal consis-

tency, and effect size that can be readily applied to any ERP data-

set. We discuss how authors of within-participant studies may

quantify and document the within-study reproducibility of selected

ERP metrics using the variability across experimental conditions.

We also illustrate the consequences of different quantification

methods, and compare the reliability and robustness (measured by

the effect size) of different types of dependent variables.

Considerations Regarding SNR

SNR quantifies the strength of a signal of interest in the presence

of noise (Teplan, 2002). Often, SNR is defined as a function of sig-

nal (S) and noise (sigma) in a single trial, modulated by the square

root of the number of trials n: SNR 5 sqrt(n) * S/sigma. Thus, SNR

increases logarithmically with the number of trials1 averaged to

produce an ERP (Handy, 2005). SNR is important in determining

the robustness and replicability of a given ERP finding, and recom-

mendations regarding the design of ERP studies are therefore often

based on SNR. For example, Luck (2014) recommended designing

ERP studies to contain a trial count high enough to reach a SNR of

10. A comprehensive discussion of trial count recommendations is

outside the scope of the present paper, but it should be noted that

many recommendations do not contain systematic quantitative or

psychometric analyses in their support, discussed in the paper by

Kappenman & Luck (2012). Instead, the present paper focuses on

simple methods for quantifying and documenting data quality that

can inform researchers regarding the suitability of the ERP signal

used as a dependent variable in a given study.

Quantifying ERP Robustness Using Internal Consistency

The present study examines an important facet of reliability known

as internal consistency. Internal consistency refers to a measure’s

ability to quantify the same underlying construct or variable (here,

ERP data) with different items or subvariables. ERP measures are

considered internally consistent if the rank ordering of subjects

remains stable for the extracted variable across different experi-

mental conditions, trials, or sessions (Simons & Miles, 1990).

Thus, internal consistency is considered particularly important in

studies with between-participants factors, in which researchers aim

to characterize individuals by means of the ERP component of

interest.

Internal consistency of ERP measures is also desirable in stud-

ies interested in the effects of within-participant manipulations on a

dependent ERP variable. To assess internal consistency of the ERP

in a within-participant design, researchers may use condition-

averaged ERPs to serve as “items” for Cronbach’s alpha, as

condition-averaged ERPs represent distinct samples drawn from

the same population of trials. This metric answers questions regard-

ing the consistency/reliability of the ERP that is attainable in a spe-

cific design, given the number of trials available: High consistency

would indicate that the ERP is reliably seen across different aver-

ages obtained from the same participant. Another possibility

includes randomly dividing all experimental trials into X number

of arbitrary groups (ignoring experimental conditions), and reaver-

aging to form new ERPs to create items for Cronbach’s alpha

(Fabiani, Gratton, Karis, & Donchin, 1987; Handy, 2005).

Although reaveraging randomly drawn trials is a feasible and

informative approach, it does not allow quantification of robustness

of experimental effects (as different conditions are averaged

together) and may obscure changes of robustness associated with

condition-specific ERP modulations.

In the present report, we address the issue of robustness and

consistency of variables derived from ERPs by using the condition-

averaged ERPs as the items for consistency analysis. The rationale

for this is as follows: (a) condition averages are the data used for

hypothesis testing, and assessing their reliability thus has higher

relevance compared to analyses based on surrogate data; (b) condi-

tion averages are readily available and do not require resampling,

thus lessening the burden on researchers; (c) similar ERP wave-

forms across conditions are typical for studies in which conditions

differ only by a specific manipulation; (d) the experimental effects

(in which the consistency of the ERP across conditions may be

reduced) are typically confined to specific temporal regions, allow-

ing the use of other temporal regions for analyzing the consistency

of the overall waveform; and (e) the internal consistency among

ERP variables derived from different conditions can be considered

a necessary condition for treating the variables as indices of the

same brain process, which is often assumed in ERP studies focus-

ing on amplitude modulation between experimental conditions.

A potential limitation of this approach arises when determining

the consistency of differences (e.g., values obtained by subtracting

one experimental condition from another). Here, Cronbach’s alpha

might underestimate the robustness of the ERP measure, because

consistency requires that a participant’s ordinal position of the

dependent variable is maintained across conditions. This require-

ment will not be met if participants vary strongly in their sensitivity

to the experimental manipulation (i.e., to the conditions). Empiri-

cally, this question can be addressed by comparing internal consis-

tency of components that are modulated versus components that

are not modulated by the experimental manipulation to determine

the consistency of the overall waveform, which is one of the

approaches illustrated in the present study.

The Role of Quantification Techniques

Quantification techniques differ in their sensitivity to the quality of

the data. For example, peak amplitude measures are more sensitive

to high-frequency noise compared to mean amplitude measures

(Luck, 2014). Conversely, applying different quantification techni-

ques may also lead to different SNRs of the dependent variable

extracted. Thus, quantification techniques such as measuring the

1. It should be noted that a logarithmic relationship between SNR
and trial count is based on the assumption that random noise in an ERP
waveform decreases as trials are added to an average. In this sense, only
random noise (and not systematic noise) decreases as trials are added to
an average, leading to a higher SNR. Systematic noise could include an
increase in alpha power over the recording session, or effects arising
from oculomotor activity that may be temporally correlated with stimu-
lus onset or offset, and would not necessarily be diminished with higher
trial counts.

124 N. Thigpen, E.S. Kappenman, and A. Keil



peak voltage, or the mean voltage of a given component, may also

affect the reproducibility of the findings of a given ERP effect. For

instance, averaging time points and sensors for the ERP signal of

interest is often thought to increase within-participant SNR and

decrease error variance across participants (Marco-Pallares, Cucur-

ell, M€unte, Strien, & Rodriguez-Fornells, 2011; Pontifex et al.,

2010). However, the choice of the temporal length and spatial

extent of voltages to be averaged (or otherwise integrated) into

dependent variables may sometimes seem arbitrary, which has led

to discussions of peak picking and averaging as potential causes

contributing to false positive findings (Dien, 2010; Keil et al.,

2014). The contribution by Luck and Gaspelin (2017) illustrates

this problem in greater detail.

In addition, an extensive discussion in the ERP literature has

identified challenges associated with measures that focus on find-

ing component peaks in general (Dien, Spencer, & Donchin,

2003; Donchin et al., 1977; Fabiani, Gratton, Corballis, Cheng, &

Friedman, 1998; Spencer et al., 1999). For example, peaks may not

capture the signal of interest, and may instead reflect brain proc-

esses that are shared between conditions and/or groups. Using dif-

ference waveforms is another common approach to address some

of these problems (Kappenman & Luck, 2012). In this approach,

replicability may be affected by the fact that SNR tends to be lower

for difference waveforms. That is, the SNR of the difference wave-

form is typically lower than the parent waveforms. Thus, the pres-

ent example analysis examines the effect size between

experimental conditions as a measure of robustness with various

quantification strategies, and discusses the relationship between

these effect sizes and the SNR of the difference waveforms.

The Present Research

The goal of the present study is to provide a set of example analy-

ses of SNR, internal consistency, and effect size in a typical ERP

study, using metrics that are rapidly and easily computed. The ulti-

mate goal of this approach is to stimulate more extensive use of

quantitative reports of reliability and replicability in empirical

reports (Keil et al., 2014). We address this question using a dataset

involving pattern-onset ERPs in a feature-based visual selective

attention task, containing four experimental conditions, each pro-

ducing an ERP containing five well-known components (i.e., the

P1, N1, P2, N2, P3). Based on a number of studies with this para-

digm (see Harter & Aine, 1984; Hopf, Boelmans, Schoenfeld,

Luck, & Heinze, 2004; McGinnis & Keil, 2011; M€uller & Keil,

2004; Schoenfeld et al., 2007), we expected the spatiotemporal

properties of the ERPs elicited in each experimental condition to

be similar. Specifically, experimental condition-averaged ERPs are

expected to differ during a brief time window from 190 to 220 ms

poststimulus onset, over parietooccipital electrode locations

(Anllo-Vento & Hillyard, 1996; Harter & Aine, 1984). In the litera-

ture, this time window is referred to as the selection negativity

(SN), and has been shown to contain an amplitude enhancement

for attended when compared to nonattended features. Thus, ERPs

derived from the conditions in a feature-based attention paradigm

are particularly suitable for demonstrating the use of Cronbach’s

alpha for quantifying internal consistency.

We quantified the internal consistency of selected variables

derived from the pattern-onset ERP by measuring Cronbach’s

alpha, and the robustness of experimental effects (differences

between conditions) by measuring effect sizes, expressed as R2. In

an attempt to illustrate the sensitivity of these approaches to SNR,

we also varied the number of trials entering the ERPs used in the

analyses. Solutions and example outcomes are presented for differ-

ent quantification techniques, notably, averaging in the time

domain (i.e., across time points) and averaging in the spatial

domain (across electrodes), prior to statistical analysis. Finally,

when using ERP data for hypothesis testing, researchers may be

interested in three different types of variables: (1) the ERP topogra-

phy at a given point in time may be relevant to testing a hypothesis

regarding spatial extent of a voltage change, (2) the shape of the

ERP waveform at a given sensor or sensor group may be of interest

when testing hypotheses regarding the temporal evolution of neuro-

cognitive processes, and (3) the voltage amplitude at specific time

points and electrodes may be used to examine hypotheses regarding

the differences in neural population activity between experimental

conditions. Accordingly, for each of these variable types, we dem-

onstrate simple methods for estimating consistency and effect size,

and examine their relation for different trials counts and quantifica-

tion techniques.

Method

Participants

Nineteen healthy volunteers (12 females; mean age 18.6, SD 0.9; 1

left-handed) participated in the experiment in exchange for course

credit. Participants were excluded if their response accuracy fell

below two standard deviations from the mean, which applied to

two participants. All participants gave written informed consent

prior to participating. The Institutional Review Board of the Uni-

versity of Florida, in line with the Declaration of Helsinki,

approved all procedures.

Stimuli and Procedure

Stimuli consisted of four sinusoidal gratings filtered with a Gaus-

sian envelope (i.e., Gabor patches). All Gabor patches were com-

posed of grayscale gratings and were presented against a gray

background with the same mean luminance (31 cd/m2) as the

Gabor patches (see Figure 1). The four stimuli varied with respect

to two task-relevant features: orientation and spatial frequency.

Stimulus orientation was manipulated by rotating the Gabor patch

grating relative to a vertical axis (1.58 or 358.58). Stimulus spatial

frequency was either 1.33 or 1.78 cycles per degree, at a visual

angle of 4.58, achieved by seating participants 140 cm from a 23”

3D LED monitor (Samsung LS23A950) set to a vertical refresh

rate of 120 Hz.

Participants performed a feature-based visual selective attention

task, which involved discriminating target stimuli (a Gabor patch

defined by a combination of orientation and spatial frequency)

from nontarget stimuli. The experimental session was organized

into 12 experimental blocks, with the target patch varying between

blocks. Prior to a given trial block, participants were presented

with a target stimulus in the middle of the screen (e.g., Stimulus A

in Figure 1), and asked to memorize the two features defining this

particular target, which included a specific orientation and spatial

frequency. Once participants reported familiarization with the tar-

get stimulus, they completed a block containing 40 trials. Each trial

contained one of the four stimuli (shown in Figure 1), presented at

the center of the screen for 66.7 ms. Participants were instructed to

indicate whether the presented stimulus matched or did not match

the target stimulus for that block. Participants responded with their

dominant hand by pressing one arrow key of a standard keyboard

when a stimulus identical to the target stimulus appeared, and the
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other arrow key when any nontarget stimulus appeared. The key-

board was placed in a comfortable location and could easily be

operated by all participants, and the mapping of the arrow keys to

target/nontarget conditions was counterbalanced across partici-

pants. Between stimulus presentations, a fixation circle occupying

0.58 of visual angle was present for an interval varying between

1.5–2.1 s. If participants did not press either response button during

this interval, it was counted as an incorrect response. A new target

stimulus was assigned at the start of each block. Participants were

allowed breaks as needed in between blocks. Both the order of

stimuli presented within a block and the order of blocks was fully

randomized. Participants were instructed to avoid head movements

and to maintain gaze on the central fixation circle.

After data collection, each trial was assigned to one of four

experimental conditions, contingent on the block’s target stimulus:

trials containing (1) stimuli that matched the target’s spatial fre-

quency and orientation (S1O1); (2) stimuli that matched the tar-

get’s spatial frequency, but not orientation (S1O2); (3) stimuli

that matched the target’s orientation, but not spatial frequency

(S2O1); and (4) stimuli that did not match the target in either spa-

tial frequency or orientation (S2O2). A total of 120 trials was pre-

sented in each of the four conditions.

Behavioral Data

Participants’ accuracy and response time was calculated across

blocks separately for each condition. This included the percentage

of correctly identified targets (hits), incorrect responses to targets

(misses), incorrect responses to a nontarget (false alarms), and cor-

rect responses to a nontarget (correct rejections). To ensure the four

stimuli were comparable in their discriminability, a 2 3 2 repeated

measures analysis of variance (ANOVA) was conducted on both

the hit rates and response times observed with the four different

stimuli, with factors of spatial frequency and orientation.

Data Acquisition

EEG data were recorded continuously with a 129-channel Geodesic

Sensor Net (Electrical Geodesic, Eugene, OR) connected to a high-

input impedance (>200 MOhms) amplifier. Electrodes were evenly

spaced across large areas of the head, including facial and neck

regions (see Figure 2). Impedance for each electrode was kept

below 60 kOhms, and the vertex electrode (Cz) was used as the

recording reference. All channels were digitized at a rate of 500 Hz

and filtered online using a Butterworth low-pass filter with a 3 dB

Figure 2. The 128-channel HydroCel Geodesic Sensor Net used in the present study. Left: Projection of the full electrode layout (VREF marks the

location of the common reference sensor, located at site Cz of the International 10-20 system). ERP reliability was assessed at all sensors. In addition,

specific clustered subsets of sensors were examined (right). For analyses of the effects of spatial averaging, sensor clusters expanded radially from

either Pz (sensor 62) or Oz (sensor 75).

Figure 1. The stimuli used in the present study. Gabor gratings were shown against a gray background, and thus onset of a grating did not change the

overall luminance of the display. The four stimuli differed on two feature dimensions: orientation (O) and spatial-frequency (S). Labels on the bottom

refer to the example in the text, illustrating the changing role of each stimulus in different experimental blocks:
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point (cutoff) at 200 Hz. All further data processing was done

offline.

Trial Segmentation, Filtering, and Artifact Handling

Continuous EEG data were digitally filtered offline using a 2nd

order Butterworth high-pass filter having a 3 dB point at .15 Hz2,

as well as a 12th order Butterworth low-pass filter with a 3 dB

point at 40 Hz. Eye movement artifacts were detected and cor-

rected using an artifact correction method based on linear regres-

sion performed on residuals, implemented in the BioSig suite of

MATLAB functions (Schl€ogl et al., 2007; Vidaurre, Sander, &

Schl€ogl, 2011). It creates a linear model of the data based on repre-

sentative ocular events, in which the contribution of electroocular

processes to the EEG measured at each time point is estimated and

removed through subtraction of the weighted electrooculogram

(EOG). This procedure bears the risk that brain-related activity is

removed if it shares spatial and temporal variance with EOG events

(compare Gratton, Coles, & Donchin, 1983, for a different

approach). In the present dataset, however, rerunning the prepro-

cessing without eye correction resulted in suppressed, not in aug-

mented, ERP amplitude. Following EOG correction, segments

were extracted from the continuous EEG, with each segment hav-

ing a duration of 1,000 ms (200 ms before and 800 ms after stimu-

lus onset).

These segments were submitted to a semiautomated artifact

detection procedure designed for multichannel electrophysiology,

which is based on distributions of trial and channel statistics

(Jungh€ofer, Elbert, Tucker, & Rockstroh, 2000). First, specific

channels that were bad throughout the experimental session were

detected with voltage data given relative to the original recording

reference (i.e., Cz). That is, channels that fell above a 2.5 SD
threshold with respect to the median of three distributions calcu-

lated across all trials (amplitude, standard deviation, and gradient)

were interpolated across all time points using spherical spline func-

tions (Jungh€ofer et al., 2000). Data at eliminated channels were

replaced with a statistically weighted spherical spline interpolation

from the full channel set (Jungh€ofer, Elbert, Leiderer, Berg, &

Rockstroh, 1997).

In a next step, based on the offline average reference, distinct

sensors from individual trials were also excluded and interpolated

when located in the tails (2.5 SD above the median) of the distribu-

tion of their absolute amplitude, maximum standard deviation, and

gradient, calculated by integrating across the time points in each

trial. Trials in which interpolated channels were clustered in one

scalp region (quantified as described in Peyk, DeCesarei, &

Jungh€ofer, 2011) and trials with fewer than 103 good channels

were excluded entirely. Only trials with correct responses were

retained for final ERP averaging, leading to an overall mean of

78.6 trials included per condition (SD 5 14.3, range 5 60–103). On

average, 24% of trials were rejected due to artifact, and 11% of tri-

als were not used for ERP analysis due to incorrect behavioral

responses. The target condition (S1O1) included a mean of 77.2

trials across participants (SD 5 15.5, range 5 61–99); condition

S1O- included a mean of 78.1 (SD 5 14.9, range 5 66–102); con-

dition S-O1 included a mean of 79.2 trials (SD 5 14.0,

range 5 61–103); and condition S-O- included a mean of 80.1 trials

(SD 5 16.7, range 5 65–103).

Analysis of Experimental Effects: SN

To ensure that the dataset used for reliability analyses was repre-

sentative, we established the extent to which the ERP waveforms

in the present study replicated a large body of earlier work in

this area (e.g., Anllo-Vento & Hillyard, 1996). Specifically, we

expected to observe a greater posterior negativity for stimuli

with target features compared to stimuli with no target features,

during the time window of the selection negativity (typically

160–280 ms). To this end, a posterior cluster of electrodes was

formed around Pz and its superior and inferior nearest neighbors

(containing electrodes 54, 55, 61, 62, 72, 75, 78, 79, 81, as

shown in Figure 2), chosen based on earlier research with this

paradigm (e.g., Keil & M€uller, 2010). Then, considering the

waveform differences seen in the grand mean as well as the pre-

vious studies discussed above (McGinnis & Keil, 2011; M€uller

& Keil, 2004), the mean voltage amplitude was extracted across

this sensor cluster and across time windows representing early

and late selection negativity (178–234 ms and 236–292 ms,

respectively, in line with the studies cited above). A repeated

measures ANOVA was conducted on each of the early and late

mean amplitudes with factors of time (early SN, late SN), spatial

frequency (match vs. nonmatch with the target), and orientation

(match vs. nonmatch with the target; Keil & M€uller, 2010).

SNR

SNR was determined at each sensor for the components P1, N1,

P3, and selection negativity using averages based on varying num-

bers of trials (10 through 80 trials in steps of 10). Specifically,

SNRs were calculated for each participant by dividing the voltage

measurement (peak amplitude) obtained for each component by the

peak across the baseline variance (from 2100 to 0 ms). The peak

amplitude of each component was determined by taking either the

maximum or minimum voltage amplitude (for positive or negative

components, respectively), across the time window centered around

the grand mean component peak (defined as P1: 100–130 ms, N1:

160–190 ms, P3: 300–330 ms, and SN: 190–220). The mean ampli-

tude was calculated as the average voltage within these same time

windows. SNR values were then averaged across participants. If

not otherwise indicated, figures display SNRs for the target

condition.

Reliability Analyses

Reflective of the spatiotemporal nature of ERP data, reliability was

assessed for various combinations of time windows and sensor

clusters extracted from the ERP matrices. Many empirical studies

do not form dependent variables based on peak amplitude measures

at single sensors, but use voltage averages across multiple electro-

des and time points for hypothesis testing (Fabiani, Gratton, Karis,

& Donchin, 1987). The effects of this strategy were examined here

by systematically averaging across increasing numbers of time

points around component peaks and across increasing numbers of

electrodes, prior to calculating internal consistency. Internal consis-

tency was quantified with Cronbach’s alpha, a coefficient repre-

senting the consistency of items (variables or repetitions) across

observations (e.g., participants). The formation of items is

described for each example analysis in the results. Cronbach’s

2. The P3 ERP component can be distorted by high-pass filters (Dun-
can-Johnson & Donchin, 1979). To ensure that the present filter sitting
did not significantly distort the P3 component in the current study, we
reanalyzed our data after preprocessing with a 2nd order Butterworth
high-pass filter having a 3 dB point set at .1 Hz. As expected, amplitude
of either component examined here was unaffected.
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alpha has been widely used to test the response similarities of items

on a questionnaire across observations, and is considered to re-

present acceptable reliability when the coefficient is above .70

(Cronbach, 1951). More recently, Hinton, McMurray, and Brown-

low, 2004 have suggested that Cronbach’s alpha exceeding .90

indicates excellent internal consistency, alphas between .70 and .90

indicate high internal consistency, and alphas from .50 to .70 indi-

cate moderate internal consistency, whereas a coefficient below .50

is considered poor.

Effect Size Analyses

Cronbach’s alpha could not be used to examine the internal consis-

tency of difference waveforms in the present design, because the

difference waveforms of interest contained the same (target) condi-

tion and thus represented linear combinations of each other, which

violates the independence-of-items assumption required for calcu-

lating Cronbach’s alpha. Instead, to quantify effect size of the well-

established selection negativity difference, a trend (F contrast)

analysis was performed using a general linear model procedure

(Rosnow, Rosnow, & Rosenthal, 1996), with weights based on the

hypothesis that feature-based attention increases the SN amplitude

with the number of attended features (Harter & Aine, 1984; Hopf

et al., 2004; McGinnis & Keil, 2011; M€uller & Keil, 2004; Schoen-

feld et al., 2007): Across the selection negativity time window (i.e.,

160–280 ms), the four conditions were weighted according to their

overlap with the target condition. The target condition itself was

weighted the lowest (expected to show greatest selection negativ-

ity), the two conditions with one feature in common with the target

(either orientation or spatial frequency) were weighted inter-

mediate, and the no-matching features condition was weighted the

highest (resulting in condition weights of 22, .5, .5, and 1, respec-

tively). The effect size of the resulting F contrast is readily

expressed as R2, which reflects the proportion of trend-related var-

iance relative to the total variance (i.e., trend variance plus unique

error variance). Traditionally, R2 estimates of effect size are

assigned to three levels: .14, a small effect; .39, a medium effect;

and .59, a large effect (Cohen, 1992). The further computational

steps taken to address different aspects of effect size are detailed

below, in the Results section.

Results

Behavioral Data

Participants performed the task with high accuracy (M 5 89% cor-

rect across all trials, SD 5 9%), and response times as expected for

this task (M 5 760 ms, SD 5 160 ms). The accuracy and response

time data are shown in Table 1. The repeated measures ANOVA

for both hit rate and reaction time showed no significant effect for

spatial frequency or orientation, suggesting that the four different

Gabor patches did not differ in their discriminability or saliency as

target stimuli.

ERP Morphology and Condition Differences

Five well-known ERP components (i.e., the P1, N1, P2, N2, P3)

showed latencies and topographies typically consistent with previous

studies of pattern-onset ERPs (see Figure 3), with component peaks

in the grand mean centered at 120, 176, 210, 256, and 340 ms post-

stimulus, respectively. A standard analysis of experimental effects

(differences between voltage amplitudes) obtained in the different

conditions was conducted to document the extent to which the pres-

ent dataset replicates known effects of feature-based attention.

Condition differences were only prominent during the selection

negativity time window, paralleling previous work on feature-

based attention with multifeature stimuli (Anllo-Vento & Hillyard,

1996; Martinez et al., 1999; Keil & Muller, 2010; McGinnis &

Keil, 2011): Selection negativity was observed for attended fea-

tures, over parietooccipital sensors, at latencies between 178 and

292 ms poststimulus. As shown in Figure 3, the selection negativity

was most pronounced when comparing the target condition

(S1O1) to the condition with no target features (S-O-). That is,

stimuli containing target features evoked larger negative deflec-

tions compared to stimuli with fewer target features, during the

selection negativity time window (which encompasses the N1, P2,

Table 1. Behavioral Data

Accuracy Response time

Category Mean SD Mean SD

Hit .89 .9 764 161
Miss .11 .9 805 288
False alarm .6 .8 933 351
Correct rejection .96 .8 714 158

N 5 19.
Note. Mean and standard deviation for accuracy and response time in
milliseconds.

Figure 3. Pattern-onset visual ERPs: A: Grand mean (N 5 19) voltage

time course at sensors Pz and Oz (see Figure 2) for the four experimental

conditions, (S1O1), (S1O-), (S-O1), (S-O-). B: Grand mean voltage

topographical distributions shown for the five major component peaks:

P1 (120 ms), N1 (176 ms), P2 (216 ms), N2 (256 ms), P3 (320 ms).
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and N2 components). As expected, an ANOVA showed main

effects of orientation, F(1,18) 5 6.95, p< .05, gp
2 5 .27, and spatial

frequency, F(1,18) 5 8.96, p< 0.01, gp
2 5 .33, which both

reflected larger negative deflections for stimuli with target features.

There was no main effect or interaction effect involving time (i.e.,

early vs. late selection negativity). Furthermore, the two factors

corresponding to attended features (orientation and spatial fre-

quency) did not interact, which replicates previous work interpret-

ing this finding to indicate additive effects of feature dimensions

on the selection negativity. In summary, analyses of condition dif-

ferences using traditional ANOVA suggested that the present data-

set is consistent with previous work in terms of direction and size

of experimental effects. Because condition differences were con-

fined to a specific temporal region and absent during the remainder

of the ERP epoch, this paradigm was considered particularly suita-

ble for the purpose of internal consistency analysis, using condi-

tions as items.

SNR

As expected, the SNR increased as a function of the number of

trials included in the average ERP waveform. With 10 averaged

trials, SNR for component peaks relative to the peak of the baseline

variance tended to be around three, and increased linearly as trial

count increased logarithmically (see Figure 4). Recommended

SNRs (10 and above, Luck, 2014) for component peaks of P1, N1,

and P3 were reached with 40 trials. Additional averaging led to

SNRs around 20, showing topographical distributions consistent

with the distribution of voltage maxima. As expected, the selection

negativity difference waveform was associated with significantly

lower SNR, as shown in Figure 4.

Reliability Analyses

Reliability of peak voltage at individual time points and

sensors. One of the most common forms of ERP analysis is the

statistical comparison of voltage measurements taken at a given

sensor and time point. To illustrate how internal consistency of

these measurements can be easily assessed, and to document the

range of possible outcomes of such an analysis, Cronbach’s alpha

was calculated for individual ERP voltages at each sensor and time

point, using the four conditions as items and 19 participants as

observations. This analysis yielded consistency estimates for each

of the 129 sensors at all 501 epoch sample points (i.e., 1,002 ms),

for a total of 64,629 alphas. These calculations were repeated with

varying numbers of trials included in the averaged ERP. The first

six trial counts were based on subsets of 10, 20, 30, 40, 50, and 60

trials per participant, respectively, in each condition. The 7th calcu-

lation included all artifact-free trials, which included a median of

80 trials per participant (range: 60–103 trials).

Figure 5 shows the topographical distribution of Cronbach’s

alpha for the peak across the baseline variance (2100 to 0) and

each component peak voltage, calculated for different trial counts.

Peak latencies were determined on the basis of the grand mean

ERP waveform, a widely used practice in ERP studies. For all five

ERP component peaks analyzed, high Cronbach’s alpha values

(i.e., exceeding an alpha of .7) were observed with relatively low

trial counts (20 trials), but only at scalp locations at which the

respective signal was pronounced. For instance, peak voltages of

P1 and N1 displayed excellent (> .9) internal consistency with as

few as 20 trials in the posterior portion of the scalp, at sensors sur-

rounding site Oz of the International 10-20 system. Later, compo-

nents P2, N2, and P3 similarly displayed high internal consistency

with few trials at scalp locations associated with their voltage maxi-

mum. Including more trials into the average was associated with

more widespread internal consistency of peak voltages, across all

component peaks examined. At a trial count of 40, internal consis-

tency reached levels of .8 or greater at 127 out of 129 sensors, for

all component peak voltages examined, representing high internal

consistency. Thus, experimental conditions used as replications

(items) displayed high consistency in estimating the underlying

dimension (here, the peak voltage at a given sensor) at trial counts

exceeding 40, over widespread scalp regions. Note that Cronbach’s

alpha as used above is easily determined for voltage scores

extracted from individual participants (n) and a given number of

conditions (k), arranged in one or more n 3 k matrices, using a

wide range of statistics or computing software packages.

Reliability of the voltage topography for each time point.

Researchers interested in the internal consistency of the voltage

topography (the distribution of voltages across the electrode array)

may also employ Cronbach’s alpha. In the present example, ob-

servations were voltages for all 129 sensors for 19 participants,

and items were the four experimental conditions, resulting in a

Figure 4. A: Signal-to-noise ratio (SNR) as a function of trial count for

three ERP components. Error bars represent the standard error of the

mean. B: Topographical distribution of the SNR of three example ERP

components, and the selection negativity (right panel). SNR was calcu-

lated for each participant and sensor for varying trial counts.
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2,451 3 4 matrix. One such matrix was created for each ERP time

point, and each matrix produced one Cronbach’s alpha value. Thus,

a time series of internal consistency estimates resulted, reflective of

the consistency of the individual topographies across the four

experimental conditions (see Figure 6). Across all trial counts,

internal consistency was low during the baseline segment, as

expected. The internal consistency of the topographical distribution

increased with the rising slope of the P1 (at 110 ms), and again

strongly varied with trial count. Cronbach’s alpha values exceeded

the threshold for high internal consistency (i.e., Cronbach’s

alpha> .7) when averaging 30 trials. Excellent internal consistency

(Cronbach’s alpha> .9) was observed between 115 and 620 ms

poststimulus for 40 or more trials. For the duration of this time win-

dow, moderate reliability (i.e., values near .68) was observed with

20 averaged trials, and low reliability was found with 10 trials (i.e.,

Cronbach’s alpha< .5). The time range of the selection negativity

(178–292 ms) was characterized by a sharp transient decrease in

cross-condition consistency. Experimental conditions (used as vari-

ables) systematically differed in amplitude and topography during

this time range in the present task. This added variability as associ-

ated with decreased internal consistency across conditions, while

still being at levels of satisfactory to excellent consistency. In com-

bination with the analysis of individual voltage scores obtained

from individual electrodes, this result highlights that a comparison

of consistency indices across components may yield converging

information about the reproducibility of the ERP measures of inter-

est, across conditions.

Reliability of the voltage time course for each sensor. A final

example analysis quantified the internal consistency of the ERP

time course (the entire voltage time series representing the poststi-

mulus ERP waveform), for each sensor. For each Cronbach’s alpha

calculation, observations were 400 time points (the entire epoch,

excluding the baseline) for 19 participants, and items were the four

experimental conditions, resulting in a 7,600 3 4 matrix. Each

matrix yielded one Cronbach’s alpha value, and this value was

determined for each EEG sensor. Thus, a topographical map of

internal consistency estimates resulted, indicating the consistency

of the voltage time courses across the four experimental conditions.

Calculations were repeated for ERPs based on 10, 20, 40, and 80

averaged trials, in the same manner as the analyses described

above. Paralleling other ERP measures, the internal consistency of

the ERP time course at individual sensors increased with trial count

(see Figure 7). As expected given the visual stimulus used in the

present study, waveform consistency was highest at posterior sen-

sors. High reliability of the ERP waveform across conditions was

reached after 40 trials, with a majority of sensors displaying

Figure 5. Reliability of peak measurements for five ERP components at each electrode location, projected to the scalp. Baseline reliability (1st

column) was measured as the peak amplitude across 100 ms of baseline. Cronbach’s alpha values are color coded, with red indicating greater consis-

tency. Note the greater spatial spread of high Cronbach’s alpha values with increasing trial count.

Figure 6. Reliability of the topographical distribution of pattern-evoked

ERPs. Cronbach’s alpha values represent the internal consistency of the

voltage distribution across the scalp, computed at each individual time

point, shown for subsets of trials. A sharp increase in internal consis-

tency of the voltage topography is visible with the onset of the P1 com-

ponent, around 120 ms.
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Cronbach’s alpha values exceeding .8. With all trials, Cronbach’s

alpha values exceeded .9 (excellent internal consistency) at 110 (of

129) sensors, suggesting that waveforms were consistent across the

four experimental conditions.

Reliability after averaging across time points and sensors. In

many empirical ERP studies, averaging voltage across time points

and/or sensors prior to statistical analysis, assumed to reduce error

variance and noise, forms the dependent variable. Thus, we also

assessed internal consistency of pattern-onset ERPs using the more

common approach in which dependent variables were formed by

voltage averaging prior to statistical analysis. In this analysis, Cron-

bach’s alphas were calculated after parametrically increasing the

number of sensors and time points included in an average. In terms

of sensors, this procedure started with the midline electrode at

which the grand mean pattern-evoked potential tended to be largest

(Oz for P1 and N1, Pz for N2, P2, P3; see Figure 2 and 3), and then

included increasing numbers of additional electrodes, added in

sequence of proximity to the first electrode. Averaging across time

started with the peak within a time window for each component:

P1 (100–140 ms), N1 (160–190 ms), P2 (200–230 ms), N2 (240–

270 ms), and P3 (300–380 ms). Once the peak was found, each

successive average included adjacent time points in both directions

in a time-domain average until reaching the borders of the time

windows encompassing the major pattern-onset ERP components.

Cronbach’s alpha was calculated for each component separately,

for all sensor cluster sizes and time window durations. Again,

Cronbach’s alpha values were calculated for ERPs with different

trial counts.

Quantifying Cronbach’s alpha for spatiotemporal voltage averages

partly supported the notion that averaging across sensors and time

points may heighten reliability. Figure 8 shows the increase in internal

consistency associated with averaging across time points and sensors,

for the N1 time window: Moderate consistency was observed for a

measure of the N1 amplitude that was based on averaging across a

30-ms time window around the N1 peak (176 ms), at sensor Oz. High

values (>.7) were obtained for ERPs based on 20 trials, when averag-

ing across 2–10 posterior sensors irrespective of temporal averaging.

In the same set of averages (20 trials), Cronbach’s alpha values were

excellent (>.9) after averaging 15 sensors in a cluster around Oz, and

40 time points in the window average around the peak of the N1.

Importantly, including additional sensors was associated with a sharp

decrease in internal consistency, in line with the consistency analysis

of peak voltages at individual sensors presented above. When using

all trials, no additional benefit in terms of consistency emerged from

across additional time points and sensors, but including sensors

beyond the parietooccipital region again led to a decrease in

Figure 8. Effects of measuring mean voltage across time points or sensors on internal consistency during the N1 time window (160–190 ms). Raster

plots show color-coded Cronbach’s alpha as a function of increasing the number of time points (x axis) and sensors (y axis) included in the mean volt-

age measure used as a dependent variable. Sensors were added radially, starting with Oz (sensor 1). Time points were added bilaterally, starting at the

N1 peak temporal peak at 176 ms. The four panels represent raster plots containing Cronbach’s alphas for different trial counts. High internal consis-

tency across the four experimental conditions is displayed in red.

Figure 7. Reliability of the ERP voltage time course. Cronbach’s alpha

values represent the internal consistency of the temporal sequence of

pattern-evoked ERP components across the epoch at each individual

sensor, shown for different trial counts. Cronbach’s alpha values are

projected to the scalp for illustration. Top: right lateral view. Bottom:

back view. Red colors indicate greater internal consistency.
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consistency. The same conclusions are suggested by analyses of the

P1 and P3 components, as shown in Table 2.

Robustness of differences between experimental conditions

(effect size of the SN). Beyond internal consistency, replicability

of ERP results in many cases depends on the robustness of differen-

ces between experimental conditions. In ERP research, these differ-

ences are often visualized using difference waveforms, such as the

selection negativity in the current study. F-contrast analyses were

used to quantify the effect size of the predicted voltage difference

between attention conditions. Paralleling reliability analyses with

Cronbach’s alpha, an initial effect size analysis was conducted at

each electrode and time point within the selection negativity time

range, for different trial counts.

As illustrated by a comparison of Figure 9 and 10, difference

waveforms tended to have significantly lower SNR. We first quan-

tified the effect size of the attention-related differences during

the selection negativity time window (178 to 292 ms) using

planned contrasts, calculated for each sensor location. As shown in

Figure 9, medium (.39) to large (.59) effect sizes were reached only

when including all available trials, and were confined to a parie-

tooccipital sensor cluster. The greatest effect size of .47 was

observed at sensor Pz, where the SN displayed greatest SNR.

Robustness of condition differences after averaging across

time points and sensors. Paralleling the approach of the reliabil-

ity analyses above, we modeled the predicted differences between

conditions after averaging time windows and sensor clusters sur-

rounding Pz. The analysis started by calculating the effect size at

the two difference wave peaks (230 and 256 ms, respectively) for

sensor Pz. The analysis then grew to include larger time windows

surrounding the peak, and larger sensor clusters expanding radially

from Pz. Again, this analysis was conducted for all subsets of

trials.

As shown in Figure 10, effect sizes of condition differences

were affected by averaging across time points and sensors, and var-

ied from early (178–234 ms) to late (236–292 ms) selection nega-

tivity (see Figure 10). In both early and late SN time windows, a

moderate effect size was observed after averaging all trials, when

averaging between 3 and 60 sensors around Pz, and for any group

of time points within the respective early or late SN window. Effect

sizes differed between the early and late SN time window. The

early time window showed highest effect sizes (maximum of .52)

after averaging across 20 ms of time around the temporal peak of

the SN (i.e., 206 ms) and a cluster of 12 sensors surrounding Pz.

The late SN displayed highest effect sizes (up to .41) when averag-

ing across 60 ms of time around the peak and 15 sensors surround-

ing Pz. Importantly, including time points or sensors that were not

consistent with the voltage topography and time course of the

selection negativity component tended to dramatically decrease

effect size estimates. To compare these results with previous inter-

nal consistency analyses, see confidence intervals at various trial

counts in Figure 11.

Discussion

The goal of this study was to provide an example analysis for how

SNR, internal consistency, and robustness may be established for

dependent variables derived from ERPs in an experimental design

with within-participant manipulations. To illustrate possible ways

toward quantifying (and maximizing) the internal consistency of

ERP results, we systematically examined the relation between the

trial count (and thus the SNR) and internal consistency, while using

effect size as a measure of ERP robustness. In addition, the effects

of several commonly used quantification techniques on reliability

were investigated, such as measuring the peak voltage or the mean

voltage across time points and/or electrodes. Given the spatiotem-

poral nature of ERP data, different types of dependent variables

may be extracted from the Electrode 3 Time matrices available for

each participant and condition. Of these different variables, we

examined the internal consistency of (a) peak and mean voltage at

selected sensors, (b) the entire voltage topography at selected time

points, and (c) the entire waveform at selected electrodes. The find-

ings have implications for a series of questions that are of theoreti-

cal and practical relevance for ERP researchers, discussed below.

Figure 9. Effect size of condition differences. The topographical distri-

bution of the robustness (effect size) measured as the R2 of the linear

contrast across four attention conditions (S1O1, S1O-, S-O1, S-O-),

for the peak during early (178–234 ms; top row) and late (236–292 ms;

bottom row) part of the selection negativity component. R2 values were

determined for each sensor and projected to the scalp for illustration.

Note that satisfactory (medium) effect size of the predicted effect

emerges only when including all trials, corresponding to SNRs around

20 in the present study.

Table 2. Percentage of Sensors and Time Points with Excellent
Internal Consistency

P1 P3

Trial count Time Sensors Time Sensors

10 45 1 0 0
20 100 40 100 25
40 100 98 100 43
80 100 100 100 98

Note. Excellent internal consistency was defined as Cronbach’s
alpha> .9. Here, P1 and P3 amplitude measurements are shown after
averaging across the temporal and spatial domains. Paralleling the strat-
egy described for Figure 8 and 10, Cronbach’s alpha was calculated for
increasing numbers of sample points within each component’s time
range and for growing numbers of sensors included in the voltage mea-
surement, for different trial counts (rows). After averaging and reliabil-
ity analyses, the percentage of time windows and sensor clusters
yielding high-reliability values (Cronbach’s alpha> .9) are shown for
each component. Data from the N1 and SN components are shown in
more detail in Figure 8 and Figure 10, respectively.

132 N. Thigpen, E.S. Kappenman, and A. Keil



Does calculating internal consistency metrics in studies of

within-participant effects have practical value?. The present

analysis found that the reproducibility of all variables examined

across repeated measurements in the same participant was readily

captured by calculating internal consistency using the experimental

conditions as items. Notably, this approach was sensitive to several

properties of ERP data known to affect reproducibility. For exam-

ple, high SNR strongly predicted high consistency, and consistency

also displayed spatial and temporal specificity reflective of the

known time course and topography of pattern-evoked ERPs. An

important question is how reactivity to the experimental manipula-

tion will affect internal consistency, compared to consistency of

components that are not modulated by the experimental manipula-

tions. In the current study, Cronbach’s alpha for occipital voltage

amplitude was relatively reduced during a narrow time window

(the selection negativity time window: 160–280 ms), although still

being at satisfactory to very good levels (see Figure 5). Thus, reac-

tivity (the change of the ERP variable in response to the experi-

mental manipulations) in the present study did not drastically alter

the ranking of participants across conditions, again supporting the

use of conditions as items for estimating consistency. In practice,

to document the consistency of the ERP in a given study, research-

ers may compare consistency of aspects of the time-varying ERP

signal that are outside versus inside the temporal region of interest.

Relatively lower consistency accompanied by satisfactory effect

size during the time window of interest then would point to an

effect that is built on consistent, robust individual ERPs, as

opposed to noisy and irregular waveforms.

Are there differences in internal consistency between spatial

and temporal properties of the ERP?. The ERP is given as a

two-dimensional matrix with temporal and spatial properties. Thus,

researchers often use portions of the temporal and/or spatial infor-

mation to quantify the latency (Miller, Patterson, & Ulrich, 1998)

and topographical distribution (McCarthy & Wood, 1985) of ERP

components. Latency and topographical distribution of an ERP

component can be utilized to compare amplitude differences across

time, locations on the scalp, and experimental conditions (Cuthbert,

Schupp, Bradley, Birbaumer, & Lang, 2000; Dien, Spencer, &

Donchin, 2004; Foxe & Simpson, 2002; Kappenman & Luck,

2012).

Figure 10. Effects of measuring mean voltage across time points and sensors on the effect size of condition differences. Raster plots show color-

coded effect size (R2) as a function of increasing the number of time points (x axis) and sensors (y axis) included in the mean voltage measure used

as a dependent variable. Values were computed during early (178–234 ms; top row) and late (236–292 ms; bottom row) part of the selection negativ-

ity component. Sensors were added radially, starting with Oz. Time points were added symmetrically, starting at the N1 temporal peak at 176 ms.

The four panels represent raster plots containing Cronbach’s alphas for different trial counts. High internal consistency across the four experimental

conditions is displayed in red.
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The current study found both the topographical distribution of

voltages (at individual time points) and the ERP waveform (the

sequence of voltage changes over time at individual sensors) inter-

nally consistent under certain conditions: The reliable quantifica-

tion (Cronbach’s alpha> .7) of the voltage topography at a given

time point was restricted to the time range in which clear ERP

components were seen, and required averages containing 40 to 50

trials, which corresponded to SNRs above 10 in the present analy-

sis. The time-varying internal consistency of the voltage topogra-

phy was most sensitive to differences between the experimental

conditions. Since conditions were used as items here, a significant

drop in consistency marked the time range of the selection negativ-

ity, in which the differences between the four experimental condi-

tions were most pronounced. Thus, although the present approach

of using experimental conditions as items or repetitions for consis-

tency analysis is convenient and widely applicable in most empiri-

cal studies, caution is warranted in situations in which between-

conditions differences are expected to lead to qualitative changes

in the ERP topography. Conversely, the time-varying consistency

analysis demonstrated here may provide a sensitive, quantitative

data mining tool for detecting time periods of systematic topo-

graphical differences between conditions. Future work may build

on existing work by systematically examining the effects of elec-

trode density on voltage measurements (Jungh€ofer et al., 1997) and

source estimation (Hauk, Keil, Elbert, & M€uller, 2002), and

include the aspect of reliability of experimental differences.

Reliably measuring the temporal sequence of ERP components

across the entire epoch was possible when using averages compris-

ing 30 or more trials, across major portions of the posterior scalp.

At these trial counts, SNRs of the main ERP components varied

between approximately 4–10. Although the findings of the present

report will necessarily be paradigm specific, this may be taken to

indicate that the dynamics of the waveform are replicable at lower

SNR than is necessary to reliably capture voltage topographies. To

fully harness the internal consistency available at relatively low

trial counts, however, it is crucial to measure the voltage waveform

at time points and sensors associated with the maximum SNR

across components. In the present dataset, high SNR across compo-

nents was seen at parietooccipital sensor locations only. Accord-

ingly, reliable waveform estimation at anterior electrode sites

requires substantially higher trial counts, compared to posterior

sensors. This relation highlights the important role of SNR for reli-

able measurement of ERP voltages, discussed in greater detail in

the next paragraph.

How many trials are required for the robust quantification

of an ERP effect?. Recommendations for trial counts are often

based on experience, tradition, laboratory lore, or estimates of

signal-to-noise of a given ERP component (Woodman, 2010). An

alternative approach taken here consists of quantitatively assessing

different psychometric and quality criteria. Internal consistency of

an ERP measure is a minimal condition for its use as an index of a

given brain process. Across the present study, high Cronbach’s

alpha values (> .7) were observed for different measures derived

from the ERP, at trial counts that may be considered surprisingly

low: When considering the cross-condition internal consistency of

individual (peak) voltage amplitude measurements, high consis-

tency was observed after averaging 30 or more trials, at posterior

scalp regions and across different ERP components. At the same

time, SNR for the 30-trial averages was in the range of 4–10 in

parietal and occipital clusters, considered not optimal for empirical

studies (Luck, 2014). It is important to keep in mind that Cron-

bach’s alpha indexes the extent to which a number of items (here,

four experimental conditions) covary across observations, which is

often interpreted as evidence of their measuring the same underly-

ing construct (here, the brain process of interest). Thus, internal

consistency can be regarded as a minimum necessary, but not suffi-

cient, condition for robust estimation of ERP effects: Authors inter-

ested in using an ERP voltage measure (e.g., a component peak

such as the P3) as a marker for individual participants may rely on

Figure 11. Selected Cronbach’s alpha values with confidence intervals: These bar graphs represent the Cronbach’s alpha values conducted on the

19 3 4 matrices, each representing the internal consistency of the four experimental conditions across the 19 participants calculated at every time

point and sensor. Shown here are 10 most relevant plots from this analysis: the peak time points for the five ERP components at two midline sensors,

each with incremental trial counts. (Notably, components P1 and N1 had their peak amplitude at sensor Pz, while components P2, N2, and P3 peaked

at sensor Oz).
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relatively low trial counts. However, high internal consistency of

the nondifference voltages does not imply that any condition differ-

ences will be reliably detected.

The effects of SNR and quantification techniques on capturing

experimental effects (condition differences) were measured by the

effect size of the selection negativity effect across the four condi-

tions. This procedure has the advantage that it takes all experimen-

tal conditions into account, thus paralleling the Cronbach’s alpha

analyses. Deviating strongly from the internal consistency meas-

ures, however, the observation of moderate to high effect sizes

required using all available trials (i.e., median of 80 artifact-free

trials with correct responses). Likewise, SNR of the difference

waveform was strongly attenuated compared to nondifference

waveforms, with 80-trial averages associated with SNRs ranging

around 5–6, at parietooccipital sensors. These findings support trial

count recommendations targeting a SNR of 10 (Luck, 2014), which

in the present dataset would be expected to lead to greater spatial

extent of high effect size measurements, across wide areas of the

scalp. In many studies with clinical, pediatric, or aging populations,

however, these trial counts may not always be achievable, and

explicit measurements of SNR may assist authors wishing to docu-

ment the data quality available in a given study. Keeping in mind

the paradigm specificity of the present results, researchers may

expect to obtain reliable findings (at moderate to high effect size)

when the SNR of the difference waveform is in the range of 5–6,

specifically in studies where the time range and electrode location

of the expected effect are known a priori. This a priori knowledge

allows further improvement of SNR by using appropriate quantifi-

cation techniques, discussed next.

How does the measurement technique impact reliability and

effect size?. Previous studies examining reliability have focused

on a particular ERP component of interest, often measured in many

different ways. Measurement techniques widely used in ERP stud-

ies include averaging or integrating voltages across time points and

sensors, with substantial variability regarding the extent (and type)

of averaging in both the time and the spatial domain. Conventions

for measuring a given ERP waveform are often grounded in tradi-

tion and tend to be flexibly adjusted to changing demands, for

example, posed by studying a specific population or using a differ-

ent paradigm or experimental task.

The current analysis demonstrated, not surprisingly, that averag-

ing across time points prior to analyses improved reliability and

effect size. This is of particular relevance for researchers interested

in quantifying spatiotemporal dynamics at high temporal resolution

(Dien, Spencer, & Donchin, 2004), based on spatial information

derived from individual sample points. As illustrated in a recent

analysis of the low-amplitude C1 component (Foxe et al., 2008),

such approaches should be guided by caution, because important

spatiotemporal information may be lost by generous averaging

across time points when measuring mean amplitude. The temporal

and spatial specificity, and thus the external validity, of ERP meas-

urements may be endangered particularly in situations where mean

amplitudes are computed across extended time periods of ERP sig-

nals measured at low SNR (Ravden & Polich, 1999). Many strat-

egies have been proposed to address this issue, including

combining time points according to their multivariate structure into

temporal factors (Dien, 2010) or by capitalizing on the rich infor-

mation contained in the single trials entering the ERP average

(Makeig, Debener, Onton, & Delorme, 2004). In a similar vein,

techniques that use the variability in the time course and topo-

graphy to determine temporally stable “microstates” in the ERP

(Pascual-Marqui, Michel, & Lehmann, 1995) may assist in ensur-

ing that the integration of voltages at subsequent time points into

one index does not reduce the validity of the measurements.

Averaging across any of the available domains (trials, time, or

sensors) may increase both the signal-to-noise ratio and the internal

consistency, at different rates for each domain. The present study

strongly suggests caution, however, when applying this approach,

because SNR, effect size, and internal consistency were all nega-

tively affected by excessive averaging across electrodes and time

points. For instance, varying the number of trials averaged together

produced internally consistent results after �40 trials for the entire

time course, but only at EEG sensors located over occipital and

parietal areas. Including frontal or facial EEG sensors drastically

decreased internal consistency and effect size. Thus, the major

components of the pattern-evoked visual ERP may be consistently

measured based on a 40-trial average at any occipital or parietal

sensor, but voltage differences at frontal or facial sensors will not

be reliably captured by such an analysis. In a similar vein, meas-

uring individual peaks of the pattern-evoked ERP from 40-trial

averages is possible for posterior sensors, but the same 40-trial

average would result in unsatisfactory internal consistency when

considering anterior sensors. It is highly likely that these specific

numerical results will not apply to other ERP studies, given differ-

ences in ERP components evoked from different stimuli and in dif-

ferent paradigms, along with varying data quality drawn from

different populations and EEG systems. However, analyses of

internal consistency are easily implemented and may accompany

reports using new analysis techniques, new ERP variables, or ERP

measurement techniques, ideally accompanied by reporting the

SNR. Communicating quantitative indices of internal consistency

such as Cronbach’s alpha may assist both the authors and readers

in assessing the robustness of effects, thus helping to increase

reproducibility in future studies with similar paradigms.

Further highlighting this point, the present study found gener-

ally nonlinear relations between SNR, internal consistency, and

effect size, for different measurement techniques such as averaging

across domains (e.g., trials, time, or sensors). These indices also

greatly varied by the scalp location and time segment included in

the analyses. As predicted, SNR increased logarithmically as a

result of averaging across trials, such that doubling the trial count

produced a linear SNR increase, but this relation was specific to

scalp locations sensitive to the component under consideration. For

example, as shown in Figure 4, SNR for the P1 ERP component

measured at sensor Oz increased linearly as the number of trials

doubled. Sensors near Oz (the location of the P1 maximum)

showed similar increases in SNR, whereas sensors in frontal areas

(distal to the location of the P1 maximum) showed low SNR

regardless of trial count. By contrast, internal consistency increased

with the number of trials averaged across wide areas of the scalp,

including at frontal and lateral sensors. Frontal EEG sensors

reached excellent reliability with all trials at component peaks,

despite small SNR at those locations.

Whereas internal consistency increased logarithmically with

added trials, it changed quadratically as a function of averaging

across multiple time points within a component. For example, for

the N1 component (based on 10 trials) measured at sensor Oz, aver-

aging 10, 20, 30, and 40 time points surrounding the peak yielded

Cronbach’s alphas of .7, .85, .9, and .8, respectively. Thus, the N1

component was most consistent when using a 20–30 ms window

average centered on the N1 peak, but reliability decreased if this

window was expanded further. This is consistent with the intuitive

notion that measuring the mean amplitude improves internal
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consistency only as long as the averaging window includes time

points that are part of the component of interest. Including time

points with different properties, with polarity being an obvious

example, will necessarily reduce SNR and reliability as well as

external validity of the measurements. Time domain averaging for

other components, including the selection negativity, produced

reliability fluctuations in a similar quadratic pattern, with a time

window of approximately 30 ms found to maximize internal con-

sistency and effect size. Thus, averaging across trials and averaging

across time points within a given component window each

increased reliability, but trial domain averaging reached ceiling

(Cronbach’s alpha values nearing 1) with all trials, while time

domain averaging began to decrease internal consistency when

extending the window beyond 30 ms.

In ERP studies, spatial averaging is sometimes implemented in

a data-driven way, by selecting the EEG sensor with the largest

SNR ratio to serve as the center of an electrode cluster containing

sensors for spatial averaging. Analogous to the temporal averaging

described above, the present study examined effects of this simple

technique by averaging across electrode clusters containing

increasing numbers of sensors, while comparing quality indices of

the data. Paralleling averaging across time points, spatial averaging

showed strong nonlinear effects on quality indices; for example,

the analysis for the P1 component started with sensor Oz, where

the SNR distribution of the P1 component showed a maximum.

Additional sensors were then added to the cluster based on spatial

proximity. As shown in Figure 8, internal consistency was highest

when the cluster was smallest (only Oz), and tended to decrease as

sensors were added to the cluster. Thus, cluster sizes of 5, 20, 35,

and 50 were associated with internal consistency values of approxi-

mately .95, .9, .85, and .8, respectively, for the peak P1 voltage

extracted from a 20-trial average. This somewhat unexpected nega-

tive relationship was apparent for all components examined (the

P1, N1, P3, SN), and for all averaged trial counts (except 80 aver-

aged trials, where internal consistency remained near one for nearly

all cluster sizes). Close examination of Figure 8 shows that sensor

averaging may result in very modest consistency increases com-

pared to individual sensor measurements. The feature-based atten-

tion difference waveform (containing the SN) is, by virtue of being

a difference waveform, particularly dependent on the signal-to-

noise ratio of the nondifference ERPs on which it is based. In the

present study, SN showed modest effect sizes with trial counts of

80 when considering individual time points and sensors. Alphas

were substantially greater when averaging across sensors and time

points: Pooling voltages for posterior midline sensors in the time

range of the N1 and N2 components, where the SN was maximal,

resulted in the highest effect sizes, but still only reached values

around 0.6. Together, these findings suggest internal consistency is

promoted by measuring pattern-evoked ERPs by including time

points, but to a lesser extent by including sensors into component

scores used as a dependent variable. Given the wide range of prac-

tices used in the ERP literature, the increased availability of similar

quantitative analyses of quality indices would be desirable, allow-

ing comparison of different quantification approaches.

Conclusions and Outlook

The present study explored ways in which the internal consistency

of ERP measurements can be assessed. A representative dataset

from a selective attention task was used, involving pattern-evoked

visual ERPs recorded by means of dense-array EEG. Main results

converged to show high internal consistency of measurements

taken from nondifference ERPs, even at surprisingly low trial

counts, corresponding to relatively low SNRs. By contrast, robust

quantification of voltage differences between experimental condi-

tions, measured by the effect size, required significantly greater

SNRs. Overall, consistency as well as effect size varied by SNR,

but not in a linear fashion: SNR predicted consistency and effect

size at posterior scalp locations where the pattern-evoked ERP sig-

nal was pronounced, but not at other sites. A comparison of quanti-

fication techniques assessed differences between measuring the

peak amplitude and measuring the mean amplitude with varying

time points and electrode sites included in the mean. Throughout

these analyses, internal consistency and effect size benefited from

measuring mean voltage, compared to the peak voltage in situa-

tions where (a) SNR of the signal of interest was low, and (b) when

including only neurophysiologically plausible time points and sen-

sors into a mean amplitude measurement (i.e., time points and elec-

trode locations that captured the same process). Including

additional scalp locations and time points was associated with a

sharp decrease in internal consistency and effect size. Thus, the

common method of measuring mean amplitude as spatiotemporal

averages across a subset of the ERP matrix may be informed by

quantitative analyses of consistency, to ensure that a given practice

reliably captures the desired aspect of the ERP signal.

It will be an interesting goal for future studies to explore the

extent to which the present analyses may be extended to other

experimental paradigms. Because the necessary computation effi-

ciency and technical training are now widely available in ERP lab-

oratories, quantitative analyses of internal consistency could easily

accompany reports on experimental findings. Future studies may

also wish to characterize the reliability using additional paradigms

and measurements common in ERP studies, such as a component’s

temporal peak or metrics extracted from independent or principal

component analysis. Overall, given the growing number of meth-

odological developments, novel paradigms, and increased use of

sophisticated measurement techniques, extensive practice of report-

ing internal consistency may be a welcome addition to the psycho-

physiologist’s toolbox.
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