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Abstract
Since	 its	 beginnings	 in	 the	 early	 20th	 century,	 the	 psychophysiological	 study	
of	 human	 brain	 function	 has	 included	 research	 into	 the	 spectral	 properties	 of	
electrical	and	magnetic	brain	signals.	Now,	dramatic	advances	 in	digital	signal	
processing,	biophysics,	and	computer	science	have	enabled	increasingly	sophis-
ticated	 methodology	 for	 neural	 time	 series	 analysis.	 Innovations	 in	 hardware	
and	 recording	 techniques	 have	 further	 expanded	 the	 range	 of	 tools	 available	
to	researchers	interested	in	measuring,	quantifying,	modeling,	and	altering	the	
spectral	properties	of	neural	time	series.	These	tools	are	increasingly	used	in	the	
field,	by	a	growing	number	of	researchers	who	vary	in	their	training,	background,	
and	research	interests.	Implementation	and	reporting	standards	also	vary	greatly	
in	 the	 published	 literature,	 causing	 challenges	 for	 authors,	 readers,	 reviewers,	
and	 editors	 alike.	 The	 present	 report	 addresses	 this	 issue	 by	 providing	 recom-
mendations	for	the	use	of	these	methods,	with	a	focus	on	foundational	aspects	
of	 frequency	 	domain	and	 time-	frequency	analyses.	 It	also	provides	publication	
guidelines,	which	aim	to	(1)	foster	replication	and	scientific	rigor,	(2)	assist	new	
researchers	 who	 wish	 to	 enter	 the	 field	 of	 brain	 oscillations,	 and	 (3)	 facilitate	
communication	among	authors,	reviewers,	and	editors.
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1 	 | 	 INTRODUCTION, 
DEFINITIONS,  AND BACKGROUND

Rhythmic	 patterns	 are	 ubiquitous	 in	 electrophysiolog-
ical	 recordings	 from	 the	 human	 brain.	 Often	 referred	 to	
as	brain	oscillations,	 these	patterns	have	been	examined	
in	 a	 rapidly	 growing	 literature,	 using	 increasingly	 so-
phisticated	 algorithms.	 Growing	 attention	 has	 also	 been	
captured	by	other,	non-	oscillatory	properties	of	brain	ac-
tivity,	 which	 likewise	 may	 be	 measured	 using	 an	 evolv-
ing	 set	of	 spectral	analysis	 tools	 (Donoghue	et	al., 2020;	
Freeman	 &	 Zhai,  2009;	 Lin	 et	 al.,  2016).	 However,	 with	
these	 advancements	 arrive	 new	 challenges	 to	 overcome.	
Scientists,	 acting	 both	 as	 authors	 and	 reviewers,	 may	
struggle	 to	keep	up	with	 the	wide	spectrum	of	available	
methods.	Communication	among	authors,	reviewers,	and	
readers	may	suffer	 from	the	lack	of	a	unifying	approach	
that	 includes	 shared	 terminology,	 accepted	 best	 practice	
methodology,	 and	 effective	 ways	 of	 reporting	 relevant	
information.

Here,	we	present	a	set	of	recommendations	and	guide-
lines	 for	 reporting	 on	 studies	 using	 frequency	 domain	
and	 time-	frequency	 domain	 analyses,	 with	 the	 aim	 of	
facilitating	communication	within	the	scientific	commu-
nity	 by	 identifying	 common	 standards.	 Section  1	 intro-
duces	definitions,	 terminology,	and	foundational	aspects	
of	 these	 analyses.	 It	 may	 be	 used	 as	 a	 tutorial	 overview	
and	 introduction,	providing	 references	 to	 relevant	 intro-
ductory	materials	as	well	as	a	glossary.	Section 2	provides	
recommendations	 on	 study	 planning	 and	 discusses	 dif-
ferent	conceptualizations	of	 frequency	domain	analyses.	
Section  3	 covers	 guidelines	 for	 reporting	 on	 different	
analytical	 techniques.	Finally,	Section 4	provides	recom-
mendations	for	statistical	analyses	and	data	presentation	
through	figures.

1.1	 |	 Definitions and taxonomy

Different	aspects	of	neural	activity	can	be	extracted	from	
scalp-	recorded	electromagnetic	time	series,	using	electro-
encephalography	 (EEG)	 and	 magnetoencephalography	
(MEG).	If	time	anchoring	events	are	present,	then	event-	
related	brain	 responses	can	be	obtained	 from	the	EEG/
MEG	 time	 series	 by	 stimulus-		 or	 response-	locked	 aver-
aging	of	time-	varying	signals	across	trials	(for	recent	re-
views,	see	Kappenman	&	Luck, 2012;	Luck, 2005).	These	
event-	related	 potentials	 (ERPs)	 and	 event-	related	 fields	
(ERFs)	 are	 often	 referred	 to	 as	 transient responses.	
These	signals	tend	to	unfold	as	a	sequence	of	deflections	
varying	in	duration,	each	showing	distinctive	timing	rela-
tive	 to	 the	 anchoring	 event.	 ERPs	 and	 ERFs	 are	 repre-
sented	 in	 the	 time domain,	 graphically	 illustrated	 by	
showing	voltage	or	field	strength	on	the	y	axis	and	time	
on	the	x	axis.	Time	domain	analyses	are	also	used	by	re-
searchers	 interested	 in	 brain	 oscillations,	 as	 discussed	
in	 Sections  1.2,	 2.2,	 and	 2.3	 (for	 further	 discussion,	 see	
Schaworonkow	&	Nikulin, 2019).	An	example	of	time	do-
main	and	frequency	domain	representations	is	shown	in	
Figure 1.

By	contrast,	frequency domain analyses	decompose	
neural	time	series	into	a	weighted	sum	of	a	set	of	elemen-
tary	 cyclic	 waves	 differing	 in	 their	 temporal	 rate.	 These	
elementary	waves	are	often	called	basis functions.	Basis	
functions	consist	of	cycles	in	which	a	temporal	pattern	is	
repeated	at	a	given	rate.	Each	temporal	rate	is	measured	in	
cycles per second	or	Hertz (Hz).	Higher	temporal	rates	
have	shorter	cycle	durations,	which	are	also	called	wave-
lengths or periods.	Thus,	a	given	wavelength	(cycle	du-
ration)	 is	 the	 inverse	 of	 frequency.	 Most	 readers	 will	 be	
familiar	with	sine	and	cosine	waves,	which	serve	as	basis	
functions	 in	 Fourier analysis,	 the	 most	 widely	 used	

K E Y W O R D S
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F I G U R E  1  Alpha	oscillation	
(~12 Hz)	represented	in	the	time	domain	
(left	panel),	and	in	the	frequency	domain	
(right	panel).	Note	the	units	on	the	x	and	
y	axes
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algorithm	for	converting	between	the	time	domain	to	the	
frequency	domain.	The	set	of	weights	given	to	each	wave	
(i.e.,	 each	 basis	 function)	 is	 called	 an	 amplitude spec-
trum;	 if	 the	 square	of	 the	amplitude	weights	 is	used,	 it	
is	referred	to	as	a	power spectrum	(see	Sections 1.2	and	
1.3	for	a	discussion	of	these	concepts).	In	this	document,	
we	refer	to	the	power	spectrum	for	brevity,	and	to	distin-
guish	 it	 from	the	phase spectrum,	which	describes	 the	
temporal	relation	of	the	signal	relative	to	the	basis	func-
tions	 at	 each	 frequency.	 Figure  2	 illustrates	 some	 of	 the	
fundamental	properties	of	oscillatory	 time	series	as	well	
as	the	elements	of	frequency	domain	analyses:	frequency,	
power,	 and	 phase.	 For	 example,	 the	 oscillation	 depicted	
in	orange	may	have	higher	frequency	(Figure 2a),	greater	
power	(Figure 2b),	or	different	phase	(Figure 2c)	than	the	
signal	shown	in	blue.

Mathematical	 transformations	 that	 produce	 a	 spec-
trum	 (i.e.,	 the	 representation	 of	 features	 as	 a	 function	
of	 frequency)	 are	 referred	 to	 as	 spectral analyses.	 A	
power	spectrum	is	graphically	illustrated	with	frequency	
on	the	x	axis	and	power	on	the	y	axis	(see	Figure 1,	right	
panel).	Finally,	various	combinations	of	event-	related	and	
frequency	 domain	 analyses	 allow	 researchers	 to	 study	
changes	in	the	amplitude	or	power	spectrum	over	time,	re-
ferred	to	as	an	evolutionary spectrum or spectrogram.	

The	 spectrogram	 is	 determined	 using	 methods	 referred	
to	 as	 time- frequency analysis (TFA).	 Sometimes,	 the	
term	event- related spectral perturbations (ERSPs)	is	
used	(Makeig	et	al., 2004)	to	indicate	a	focus	on	changes	in	
spectral	properties	over	time,	rather	than	on	their	absolute	
values.

Time	 domain	 averaging	 methods	 are	 typically	 used	
when	the	aim	is	to	study	transient	activity	that	arises	in	re-
sponse	to	(or	in	preparation	for)	anchoring	events,	such	as	
the	onset	of	a	stimulus	or	the	initiation	of	a	motor	response	
(e.g.,	 ERPs	 and	 ERFs).	 By	 contrast,	 frequency	 domain	
analyses	are	typically	used	to	quantify	recurrent	phenom-
ena,	referred	to	as	brain	rhythms	or	oscillations.	Although	
many	definitions	of	these	terms	exist,	both	“brain	oscilla-
tions”	 and	 “brain	 rhythms”	 are	 most	 frequently	 used	 to	
denote	 electrophysiological	 patterns	 which	 recur	 more	
or	 less	 regularly	 (i.e.,	 they	 repeat	 at	 least	 several	 times).	
However,	as	we	will	see	later,	nonrecurrent	(or	transient)	
phenomena	are	also	represented	 in	 the	spectra	obtained	
with	frequency	domain	analyses.	Thus,	spectral	analyses	
represent	 a	 widely	 employed	 approach	 for	 quantifying	
not	just	brain	oscillations	but	also	transient	or	other	non-	
oscillatory	phenomena	(e.g.,	Harper	et	al., 2014).

One	 widely	 used	 taxonomy	 of	 the	 brain’s	 oscilla-
tory	 activity	 is	 the	 classification	 introduced	 by	 Robert	
Galambos  (1992).	 Galambos	 distinguished	 (i)	 sponta-
neous	 oscillations,	 which	 are	 not	 related	 to	 external	
stimuli,	 (ii)	 evoked	 oscillations,	 which	 are	 elicited	 and	
precisely	 time-	locked	 to	 the	 onset	 of	 an	 external	 stimu-
lus,	(iii)	emitted	oscillations,	which	are	time-	locked	to	a	
stimulus	that	was	expected	but	then	did	not	occur,	and	(iv)	
induced	oscillations,	which	are	prompted	by	a	stimulus	
but	are	not	time-		and	phase-	locked	to	its	onset.	Figure 3	
illustrates	these	concepts,	respectively.

A	further	classification	used	in	the	literature	is	based	
on	 the	 separation	 between	 intrinsic oscillations,	 or	
the	emergent	dynamics	of	the	brain	itself,	versus	driven 
oscillations,	 which	 occur	 in	 response	 to	 periodic	 stim-
ulation,	 such	 as	 a	 response	 to	 regularly	 flickering	 light	
or	 to	 an	 amplitude-	modulated	 tone	 (Norcia	 et	 al.,  2015;	
Picton	et	al., 2003).	Multiple	 taxonomies	are	 in	use,	and	
a	substantial	body	of	research	has	suggested	that	distinc-
tions	among	different	types	of	oscillations,	as	well	as	be-
tween	oscillations	and	non-	oscillations,	are	graded	rather	
than	categorical	 in	nature	(Moratti	et	al., 2007;	Truccolo	
et	al., 2002).	Thus,	authors	may	prefer	to	abstain	from	tax-
onomic	labels	(e.g.,	“evoked”)	and	instead	quantitatively	
characterize	the	oscillatory	properties	of	interest	based	on	
their	similarity	or	the	degree	of	phase	locking	across	tri-
als	(Aviyente	et	al., 2011;	Eidelman-	Rothman	et	al., 2019),	
using	methods	described	in	Sections 3.3	and	3.4.	Table 1	
provides	an	overview	of	key	definitions	and	concepts	re-
lated	to	spectral	analyses,	used	in	this	document.

F I G U R E  2  Illustration	of	different	aspects	of	oscillatory	
activity.	Relative	to	a	3 Hz	sine	wave	that	completes	three	cycles	in	
each	second	(blue	line),	the	orange	dashed	line	differs	in	terms	of	
(a)	frequency;	(b)	power;	(c)	phase
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1.2	 |	 Conceptual foundations: What is 
measured in frequency domain analyses?

Time	domain	(e.g.,	ERPs	and	ERFs),	 frequency	domain,	
and	time-	frequency	analyses	reflect	different	ways	of	rep-
resenting	 or	 summarizing	 the	 same	 underlying	 neural	
time	 series.	 Averaging	 in	 the	 time	 domain	 (commonly	
used	 to	 derive	 ERP	 waveforms)	 is	 designed	 to	 quan-
tify	 the	central	 tendency	of	 the	observed	voltage	or	 field	
strength	 values	 relative	 to	 an	 anchoring	 event.	 Thus,	 in	
time	domain	averaging,	 the	variability	around	 this	most	
representative	time	course	is	considered	a	form	of	error,	
or	noise.	When	averaged	waveforms	are	computed	on	a	
sufficient	number	of	trials,	neural	phenomena	that	share	
a	common	time	course	remain	visible.	These	signals	are	
often	referred	to	as	phase-	locked	and	time-	locked	to	 the	
event,	because	they	reflect	the	central	tendency	(i.e.,	the	
mean)	of	the	time	course	that	unfolds	in	each	trial,	rela-
tive	to	the	anchoring	event.	They	can	be	measured	at	the	
signal’s	native	sampling	rate.

By	 contrast,	 frequency	 domain	 analyses	 are	 designed	
to	decompose	 the	variance	 (or,	more	precisely,	 the	 sum-	
of-	squares)	of	the	neural	time	series.	Thus,	temporal	fluc-
tuations	of	voltage	or	magnetic	fields	in	a	given	recording	
epoch	 are	 not	 considered	 as	 noise	 but	 are	 quantified	
across	a	range	of	frequencies.	In	this	decomposition,	any 
source of variance of the time series is represented 
in the resulting frequency spectrum.	Thus,	the	power	
spectrum	based	on	frequency	decomposition	methods	in-
cludes	both transient (non- periodic) and oscillatory	
activities	 that	 occur	 during	 the	 time	 interval	 of	 interest.	
Because	time	information	(i.e.,	a	temporal integration 
window)	 is	 used	 to	 estimate	 variance,	 the	 temporal	

precision	 of	 the	 resulting	 variable	 is	 lower	 than	 that	 of	
time	domain	analyses,	such	as	ERPs.	This	property	of	fre-
quency	domain	and	time-	frequency	domain	analyses	will	
be	discussed	in	Sections 1.3	and	2.3.

Importantly,	 the	 power	 assigned	 to	 each	 frequency	
cannot	 assume	 negative	 values	 and	 will	 therefore	 not	
cancel	 out,	 even	 when	 averaging	 across	 multiple	 power	
spectra	from	different	epochs.	Consequently,	the	average	
power	spectrum	over	epochs	will	 reflect	both	oscillatory	
and	transient	activity.	Transient	activities	in	response,	or	
in	preparation,	to	unidentified	internal	or	external	events	
coexist	 with	 oscillatory	 phenomena.	 Their	 wavelengths	
are	likely	to	vary,	primarily	reflecting	the	wide	variety	of	
underlying	 generation	 mechanisms.	 When	 researchers	
are	interested	in	focusing	on	oscillatory	activity,	they	may	
consider	 the	 contribution	 of	 non-	oscillatory	 activity	 to	
the	power	spectrum	as	“noise”	because	it	extends	across	a	
wide	set	of	frequencies	(Barry	&	Blasio, 2021;	Donoghue	
et	al., 2020).	Techniques	 for	addressing	this	problem	are	
discussed	in	Section 3.1.

Two	major	 types	of	broadband	noise	have	been	iden-
tified.	 The	 first	 is	 noise	 that	 displays	 no	 dominant	 fre-
quency,	 reflecting	 factors	 such	 as	 stochastic	 phenomena	
from	outside	the	brain,	but	also	noise	intrinsic	to	the	re-
cording	and	digitization	of	brain	signals,	such	as	the	ap-
proximations	 made	 during	 analog-	to-	digital	 conversion	
(e.g.,	Oken, 1986).	The	 spectrum	of	 this	 type	of	noise	 is	
uniform,	 and	 is	 referred	 to	 as	 “white noise”	 (Barry	 &	
Blasio, 2021).

By	 contrast,	 nonperiodic	 brain	 signals,	 like	 most	 bi-
ological	 systems	 (Szendro	 et	 al.,  2001),	 tend	 to	 show	 a	
stronger	 relative	 contribution	 of	 lower-	frequency	 ac-
tivity	 than	 of	 higher-	frequency	 activity	 to	 the	 spectrum	

F I G U R E  3  Example	waveforms	
illustrating	Galambos’s	taxonomy.	Evoked	
oscillations	(a)	across	trials	occur	in	a	
phase-	locked	and	time-	locked	manner	
response	to	a	stimulus,	whereas	induced	
oscillations	(b)	are	neither	time	nor	
phase-	locked	to	a	stimulus	onset.	Emitted	
oscillations	(c)	are	similar	to	evoked,	
but	occur	in	trials	where	a	stimulus	was	
expected	but	did	not	occur.	Spontaneous	
oscillations	(d)	occur	in	continuous	
recordings	and	are	not	driven	by	or	
systematically	linked	to	anchoring	events
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T A B L E  1 	 Key	terms	and	definitions

Term Definition

Aliasing The	misrepresentation	of	frequencies	that	is	not	appropriately	captured	by	the	digital	sampling.	For	
example,	frequencies	above	the	Nyquist	frequency	(see	below),	if	not	removed	prior	to	digitization	of	
the	neural	signal,	will	appear	as	spurious	lower-	frequency	phenomena	in	the	resulting	spectrum

Autoregressive	(AR)	model This	approach	reconstructs	a	time	series	into	frequency	components	by	means	of	linearly	regressing	past	
time	points	onto	future	time	points.	The	beta	values	of	this	regression	serve	as	estimates	of	power	
at	different	frequencies.	AR	modeling	is	often	used	for	spectral	analysis	and	in	Granger	causality	
analyses

Basis	functions Sets	of	models	used	for	the	decomposition	of	a	time	series	into	the	frequency	domain.	For	example,	sine	
and	cosine	functions	serve	as	the	basis	functions	in	Fourier	analysis

Complex	number A	numerical	representation	in	which	a	value	consists	of	two	components,	a	real	and	an	imaginary	part.	
Often	used	to	represent	the	frequency	domain	components	(see	Fourier	components)	corresponding	
to	sine	and	cosine	basis	functions,	respectively

Cross-	frequency	coupling	
(CFC)

A	term	for	analyses	that	examine	the	interactions	between	oscillatory	processes	at	different	frequencies,	
such	as	the	systematic	co-	variation	of	power	changes	at	one	frequency	(e.g.,	40 Hz)	with	changes	in	
phase	at	another	frequency	(e.g.,	6 Hz).	Other	examples	include	covariation	of	power	changes	at	two	
different	frequencies,	and	interactions	between	the	phase	at	two	different	frequencies

Edge	artifacts Distortions	in	spectral	representations	caused	by	variations	in	values	at	the	beginning	and/or	end	of	the	
empirical	input	time	series

Event-	related	spectral	
perturbations	(ERSPs)

A	term	used	to	denote	power	changes	in	the	evolutionary	spectrum	(i.e.,	changes	in	the	time-	frequency	
domain).	A	Fourier	spectrogram	or	wavelet	analysis	may	be	used	to	quantify	ERSPs

Fourier	analysis A	method	for	decomposing	time	series	into	frequency-	specific	components,	modeled	by	sine	and	cosine	
waves.	The	result	is	a	complex	spectrum	in	which	each	frequency	is	represented	by	a	pair	of	real	
and	imaginary	numbers,	joined	together	as	one	complex	number	per	frequency.	From	these	Fourier	
components,	power	and	phase	may	be	extracted

Fourier	components The	weights	of	the	sine	and	cosine	basis	functions	in	a	Fourier	analysis,	typically	referred	to	as	imaginary	
(i.e.,	sine)	and	real	(i.e.,	cosine)	components

Fourier	uncertainty	
principle

The	notion	that	the	detail	contained	in	a	spectrum	varies	inversely	as	a	function	of	the	duration	of	the	
input	time	domain	signal.	As	such,	longer	time	domain	segments	result	in	greater	resolution	in	the	
frequency	domain

Frequency	domain A	representation	in	which	properties	of	a	signal	are	analyzed	as	a	function	of	frequency,	instead	of	time	or	
space.	Typically,	this	is	shown	as	a	figure	with	frequency	in	Hertz	on	the	x	axis

Hertz	(Hz) A	unit	for	the	temporal	rate	(i.e.,	frequency)	of	repeating	events,	measured	in	full	cycles	per	second.	For	
example,	an	oscillation	that	repeats	five	times	per	second	has	a	frequency	of	5 Hz

Nyquist	frequency The	frequency	that	is	½	the	rate	at	which	a	time	series	was	digitized	(sampled).	For	example,	when	
sampling	at	500 Hz,	the	Nyquist	frequency	is	250 Hz.	The	Nyquist	frequency	defines	the	width	of	the	
range	of	contiguous	frequencies	that	can	be	represented	without	aliasing

Phase-	locking A	measure	of	the	similarity	of	phase	values,	or	phase	differences,	across	observations	such	as	repeated	
trials,	channels,	or	time	windows

Pink,	or	1/f,	noise A	collection	of	nonperiodic	processes	in	which	power	at	lower	frequencies	is	relatively	larger	in	
amplitude,	resulting	in	a	spectrum	that	takes	the	shape	of	an	exponential	function	f(x) = x−1

Power	spectrum A	frequency	domain	representation	in	which	the	magnitude	(e.g.,	y	axis)	of	activity	present	in	a	series	of	
data	points	is	calculated	for	different	frequencies	(e.g.,	x	axis)

Sample	or	sampling	rate The	temporal	rate	(i.e.,	frequency)	at	which	continuous,	analog	data	are	converted	to	numerical	values	to	
be	digitally	stored

Spectrogram An	analysis	that	quantifies	changes	in	spectral	properties	as	they	develop	over	time.	Sometimes	called	
the	evolutionary	spectrum,	spectrogram	analyses	are	often	associated	with	shifting	Fourier	windows	
across	a	time	series	and	measuring	the	spectrum	during	subsequent	time	points

Stationarity Often	referred	to	as	covariance	stationarity,	it	indicates	that	the	low-	order	statistical	properties	of	the	
frequency	domain	signal	(e.g.,	mean	power	and	phase)	do	not	change	during	the	interval	considered	
for	the	analysis

(Continues)
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(He, 2014).	As	a	consequence,	scalp-	recorded	broadband	
noise	often	shows	an	inverse	relationship	between	power	
and	frequency.	This	second	form	of	noise	is	often	labeled	
“pink noise”,	1/f noise,	or	aperiodic	activity	(Donoghue	
et	al., 2020;	Freeman	&	Zhai, 2009;	Lin	et	al., 2016),	mean-
ing	that	its	power	declines	with	increasing	frequency,	fol-
lowing	 a	 power	 function.	 The	 term	 aperiodic	 is	 used	 to	
indicate	that	pink	noise	is	not	rhythmic,	that	is,	the	under-
lying	signal	does	not	repeat	itself	in	a	regular	fashion.	In	
the	published	literature,	pink	noise	is	typically	considered	
physiological	in	origin	and	is	ubiquitous,	although	varying	
in	intensity.	Broadband	activity	may	be	more	pronounced	
at	some	frequencies	than	others,	reflecting	non-	oscillatory	
contributions	at	different	wavelengths.	This	may	create	a	
complex	 spectral	 shape	 for	 the	“pink	noise”,	which	may	
be	best	described	by	a	power	function	with	an	exponent	
other	 than	 −1.	 Figure  4	 shows	 an	 example	 of	 a	 power	
spectrum	derived	from	80	trials	of	EEG	in	a	young	healthy	
participant,	along	with	the	best-	fitting	pink	noise	defined	
by	a	1.5/f	function.

Given	these	nonlinear	properties	of	the	non-	oscillatory	
noise,	 the	 extent	 to	 which	 a	 given	 neural	 or	 behavioral	
time	series	should	be	regarded	as	an	oscillation	has	been	
a	 matter	 of	 debate	 (Donoghue	 et	 al.,  2020;	 Gyurkovics	
et	 al.,  2021).	 Recent	 work	 has	 increasingly	 separated	
“true”	 near-	periodic	 oscillations	 at	 a	 specific	 temporal	
frequency,	 or	 in	 a	 frequency	 band,	 from	 aperiodic	 fluc-
tuations	 in	 the	 signal	 such	 as	 pink	 noise	 or	 white	 noise	
(Donoghue	 et	 al.,  2020;	 He,  2014;	 Hughes	 et	 al.,  2012).	
As	 oscillatory	 activity	 is	 expected	 to	 occur	 at	 regular	

intervals,	 while	 aperiodic	 activity	 is	 supposed	 to	 occur	
at	 relatively	 random	intervals,	 it	has	also	been	proposed	
to	 quantify	 the	 rhythmicity	 of	 a	 signal	 by	 the	 degree	 of	
how	the	phase	spectrum	is	preserved	over	time	(Fransen	
et	al., 2015).	Another	widely	used	criterion	for	identifying	

Term Definition

Temporal	integration	
window

The	time	window	over	which	specific	values	of	power	and	phase	for	a	particular	frequency	are	computed.	
Since	only	one	value	of	power	and	phase	is	computed	for	each	temporal	integration	window,	it	is	
linked	with	the	Fourier	uncertainty	principle	and	the	concept	of	stationarity

Time	domain Representation	of	a	signal	as	a	function	of	time.	For	example,	event-	related	potentials	(i.e.,	ERPs),	event-	
related	fields	(i.e.,	ERFs),	and	raw	EEG	are	time	domain	data

Time-	frequency	plot A	graphical	representation	illustrating	changes	in	spectral	properties	as	they	develop	over	time	(see	
spectrogram).	Graphically,	time	and	frequency	are	typically	shown	as	two	orthogonal	(e.g.,	x	and	y)	
axes,	and	the	spectral	feature	of	interest	(e.g.,	power)	is	shown	on	a	z	axis	in	three-	dimensional	plots,	
or	color	coded	in	two-	dimensional	plots

Time	series A	sequence	of	temporal	observations	ordered	along	a	time	axis

Wavelength The	inverse	of	frequency.	This	metric	describes	the	duration	of	a	full	cycle	of	an	oscillation

Wavelet	transform A	method	for	extracting	time	and	frequency	information	from	time	domain	signals

White	noise Nonperiodic	signals	in	which	the	spectral	energy	is	evenly	distributed	across	frequencies,	often	associated	
with	stochastic,	nonbiological	processes

Zero-	padding A	technique	for	increasing	the	length	(i.e.,	duration)	of	a	time	domain	signal	by	adding	zeros	at	the	
beginning	and/or	end.	It	is	often	used	with	the	intention	to	heighten	the	frequency	resolution	
of	a	spectrum	(see	Fourier	uncertainty	principle)	by	adding	time	points	without	adding	spectral	
information

Note:	This	table	summarizes	definitions	for	some	of	the	key	terms,	with	a	focus	on	application	in	human	electrophysiology.

T A B L E  1 	 (Continued)

F I G U R E  4  Spectral	analysis	of	electrophysiological	data.	Blue	
line:	Example	power	spectrum	derived	from	80	segments	of	resting	
EEG	through	discrete	Fourier	transform,	derived	from	sensor	oz	
in	one	participant.	Orange	line:	Best-	fitting	1/f	function	(i.e.,	1.5/f)	
illustrating	the	pink	noise	portion	of	the	power	spectrum.	Note	the	
deviation	from	1/f	at	~10 Hz,	consistent	with	occipital	alpha-	band	
activity
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“true”	oscillations	considers	the	degree	of	power	concen-
trated	within	a	specific	frequency	range	relative	to	power	
in	other	frequency	ranges	(Keil	et	al., 2014),	as	shown	for	
the	 alpha-	band	 oscillation	 in	 Figure  4.	 In	 the	 final	 sec-
tion	of	the	introduction	to	this	document,	we	discuss	the	
computational	foundations	of	algorithms	used	to	quantify	
spectral	phenomena.

1.3	 |	 Basic computational principles of 
frequency domain analyses

A	comprehensive	introduction	of	the	mathematical	con-
cepts	related	to	frequency	domain	analyses	is	outside	the	
scope	of	 this	report,	and	readers	are	referred	to	widely	
used	textbooks	and	tutorials	on	the	topic	(Cohen, 2014;	
Gable	 et	 al.,  2022;	 Handy,  2004).	 To	 facilitate	 reading,	
and	to	highlight	concepts	of	relevance	for	communicat-
ing	 psychophysiological	 research,	 this	 section	 gives	 a	
short	 introduction	 to	 the	 fundamental	 principles	 that	
are	 shared	 between	 most	 of	 the	 analytical	 techniques	
discussed	 in	 this	 paper,	 using	 the	 Fourier	 transforma-
tion	as	an	example.	As	mentioned	above,	spectral	power	
at	a	particular	frequency	reflects	the	amount	of	variance	
(fluctuation	around	the	mean)	that	is	accounted	for	by	
the	 corresponding	 basis	 function	 integrated	 across	 the	
time	 interval	entering	 the	analysis.	Because	 the	power	
spectrum	 represents	 an	 integral	 over	 time,	 the	 same	
total	 power	 for	 a	 given	 frequency	 can	 be	 obtained	 by	
a	single	 large	deflection	or	by	a	series	of	 smaller	 regu-
larly	occurring	oscillations	covering	the	entire	analysis	
interval.	Thus,	 time	information	is	 lost	and	power	at	a	
particular	 frequency	 cannot,	 per	 se,	 be	 interpreted	 as	
demonstrating	 the	 existence	 of	 oscillatory	 activity	 at	
that	 frequency	 (see	e.g.,	Donoghue	et	al.,  2022).	Other	
techniques	are	needed	to	establish	the	presence	of	an	os-
cillation	and	examples	of	these	techniques	are	discussed	
in	Section 3.1.

1.3.1	 |	 Power,	phase,	and	complex	spectra

To	 be	 valid,	 the	 decomposition	 of	 time	 series	 into	 basis	
function	 weights	 must	 take	 into	 account	 the	 relative	
timing,	 or	 phase,	 of	 the	 oscillatory	 waveforms	 in	 the	
basis	 functions	 relative	 to	 the	 observed	 time	 series	 (see	
Figure  2).	 To	 meet	 this	 requirement,	 frequency	 domain	
analyses	include	not	just	one,	but	two	basis	functions	for	
each	frequency,	so	that	their	joint	information	covers	all	
possible	phase	differences.	Typically,	orthogonal	pairs	of	
basis	functions	are	used,	such	as	the	sine	and	cosine	func-
tions,	or	other	function	pairs	in	which	one	is	a	derivative	
of	the	other.	Note	that	in	applying	this	analytic	approach	

one	 is	not	assuming	that	 there	actually	were	 these	basis	
functions	 operating	 in	 the	 biological	 system	 being	
analyzed—	only	 that	 this	approach	can	represent	 the	ac-
tual	biological	system	with	high	fidelity.	When	using	basis	
function	pairs	in	which	each	function	has	a	mean	of	0,	and	
their	cross-	product	is	also	0,	the	combined	sum-	of-	squares	
reflects	the	power	of	the	empirical	time	series	at	that	par-
ticular	frequency.	Because	of	these	functional	definitions,	
spectral	data	are	readily	illustrated	in	a	two-	dimensional	
Cartesian	 space,	 spanned	 by	 the	 two	 orthogonal	 basis	
functions	(Figure 5).

In	general,	the	value	on	each	axis	represents	the	inde-
pendent	contribution	of	 each	of	 the	 two	basis	 functions	
to	 the	observed	waveform	during	 the	 interval	 that	 is	 ex-
amined.	The	 joint	 ability	 of	 the	 two	 basis	 waveforms	 to	
account	for	the	temporal	variance	in	the	time	series	is	ex-
pressed	by	the	length	of	the	vector	joining	the	point	iden-
tified	in	the	Cartesian	space	with	the	origin.	This	length	
is	 called	 amplitude	 (and	 its	 square	 value	 is	 the	 power).	
Note	 that	 shifts	 in	 the	 timing	of	 the	observed	waveform	
relative	to	the	two	basis	functions	will	change	their	rela-
tive	contributions	to	the	observed	waveform,	but	will	not	
change	their	cumulative	contribution,	in	a	manner	analo-
gous	to	an	orthogonal	rotation	in	two-	dimensional	space.	
Hence,	these	graphical	representations	illustrate	another	
fundamental	aspect	of	spectral	analysis:	orthogonal	basis	
function	pairs	also	allow	for	the	computation	of	the	phase	
spectrum—	containing	 the	 phase	 difference	 between	 the	
empirical	signal	and	the	best-	fitting	basis	 functions.	The	
phase	at	a	given	frequency	can	be	computed	as	the	angle	
between	the	basis	functions:	The	tangent	of	that	angle	is	
equal	to	the	ratio	between	the	cross-	products	of	the	basis	
functions	(e.g.,	the	sine	and	cosine	at	10 Hz)	with	the	ob-
served	time	series.	The	arctangent	function	is	used	to	find	
the	angle	(see	Figure 5).

Mathematically,	 the	 pair	 of	 orthogonal	 functions	 is	
often	represented	as	two	components	in	a	so-	called	com-
plex	number,	in	which	the	two	paired	components,	called	
the	 real	 and	 imaginary	 part,	 are	 combined.	 In	 Fourier	
analysis,	by	convention,	the	sinusoidal	contribution	is	re-
flected	in	the	imaginary	part	and	the	cosinusoidal	contri-
bution	in	the	real	part	of	the	complex	number.	Together,	
the	two	orthogonal	components	span	the	Cartesian	space	
shown	 in	 Figure  5.	 Thus,	 this	 representation	 is	 called	
Fourier	 component	 representation,	 or	 trigonomic	 rep-
resentation.	 However,	 in	 the	 majority	 of	 analysis	 suites	
and	packages	available	to	EEG/MEG	researchers,	Euler’s	
equation	 is	 used	 to	 describe	 the	 complex	 spectrum	 in	
terms	 of	 an	 exponential	 equation.	 This	 equation	 states	
that	 the	component	 formulation	shown	in	Figure 5,	can	
be	rewritten	for	any	real	number	x	as:

(1.1)cos (x) + i∗ sin (x) = eix



8 of 37 |   Keil et al.

	with	i	being	the	imaginary	component	(the	square	root	of	
−1)	and	e	the	base	of	the	natural	logarithm.	This	is	conve-
nient	because	it	fully	describes	the	complex	spectrum,	but	
it	 does	 so	 using	 intuitive	 terms	 of	 power	 and	 phase,	 with	
the	real	part	in	the	right	side	of	Equation (1.1)	representing	
power	and	the	imaginary	part	representing	phase.	In	both	
cases,	the	published	literature	refers	to	the	“imaginary	part”	
and	“real	part”,	but	depending	on	whether	the	component	
formulation	or	Euler’s	 formula	 is	used,	 this	 term	refers	 to	

different	aspects	of	the	spectrum.	Replication	and	commu-
nication	 are	 aided	 by	 clearly	 stating	 which	 formulation	 is	
used	in	a	given	algorithm	or	published	work.

1.3.2	 |	 The	Fourier	spectrum	and	its	
frequency	resolution

As	 noted	 above,	 the	 power	 and	 phase	 spectra	 of	 a	 digi-
tally	 sampled	 time	series	 contain	 the	complete	 informa-
tion	 available	 in	 the	 original	 time	 series,	 if	 full	 spectra	
are	calculated.	This	means	that	a	full	spectrum	of	phase	
and	power	values	can	be	converted	back	into	its	original	
time	series.	A	full	spectrum	contains	the	same	number	of	
points	as	the	decomposed	time	series,	but	usually	only	the	
first	half	of	the	Fourier	coefficients	are	shown	because	the	
second	half	contains	the	same	information.	This	is	a	result	
of	the	mathematical	properties	of	the	Fourier	transform.	
As	already	noted,	 this	decomposition	method	uses	basis	
functions	 for	 each	 frequency	 that	 are	 orthogonal,	 with	
their	cross-	product	being	equal	to	0.	For	infinitely	repeat-
ing	functions,	such	as	sinusoidal	and	cosinusoidal	waves,	
both	assumptions	are	often	not	met	when	the	basis	func-
tion	 time	 series	 are	 truncated	 without	 completing	 a	 full	
cycle.	As	a	consequence,	only	certain	sets	of	frequencies	
can	be	analyzed	in	this	fashion—	frequencies	that	are	in-
teger	multiples	of	the	fundamental	frequency	of	the	time	
series,	calculated	as	the	inverse	of	its	duration.	Thus,	for	
an	analysis	 interval	of	 length	T	seconds,	 the	frequencies	
in	the	spectrum	will	be	1/T Hz,	2/T Hz,	3/T Hz,	etc.	The	
step	size	between	these	frequencies	is	called	the	frequency	
resolution	of	the	spectrum.	That	is,	the	resolution	of	the	
output	 in	 the	 frequency	domain	 is	a	 function	of	 the	du-
ration	 of	 the	 input	 in	 the	 time	 series.	 Therefore,	 input-
ting	longer	time	segments	produces	higher	resolution	in	
the	frequency	domain.	For	example,	a	Fourier	spectrum	
based	on	2000 ms	of	EEG	data	will	contain	power	values	
at	intervals	spaced	at	0.5 Hz	(1/2 s),	and	a	spectrum	based	
on	 5000-	ms	 segments	 will	 have	 steps	 spaced	 at	 0.2  Hz	
(1/5 s).	Section 2.3	provides	a	more	detailed	and	practical	
discussion	of	this	topic.

In	principle,	 the	choice	of	 the	basis	 functions	is	arbi-
trary,	in	that	a	variety	of	basis	function	pairs	can	represent	
signals.	The	use	of	sine	and	cosine	as	the	basis	functions	is	
most	common,	but	other	basis	functions	are	in	wide	use.	
If	 the	 full	 range	 of	 frequency	 spectra	 in	 a	 data	 set	 is	 to	
be	built,	 it	 is	 important	that	the	basic	temporal	shape	of	
the	basis	 functions	can	be	 scaled	 for	all	 sets	of	 frequen-
cies	 that	 are	 going	 to	 be	 used.	 This	 potential	 limitation	
should	be	considered	when	analyzing	high	frequencies,	in	
which	the	wavelength	(and	therefore	the	number	of	sam-
pling	points)	available	to	reproduce	the	basic	shape	of	the	
basis	 function	may	be	 limited.	Therefore,	 it	 is	 important	

F I G U R E  5  Illustration	of	the	polar	representation	of	a	time	
series	in	the	frequency	domain.	Three	example	waveforms	are	
decomposed	into	real	(cosine	basis	function)	and	imaginary	(sine	
basis	function)	parts,	and	plotted	as	a	vector	in	a	cartesian	space,	
where	the	length	of	the	vector	represents	the	amplitude	at	a	given	
frequency	(i.e.,	the	joint	contribution	of	both	basis	functions	to	the	
time	series)	and	the	angle	represents	the	phase	of	the	signal	(i.e.,	
the	temporal	position	relative	to	the	basis	functions)
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to	identify	frequencies	of	interest,	particularly	the	highest	
frequency,	and	the	time	segments	needed	to	analyze	these	
frequencies.	The	vast	majority	of	available	algorithms	for	
spectral	analysis	rely	on	sine	and	cosine	waves	and	their	
variants.

Finally,	neural	time	series	used	in	the	research	context	
are	digitized	sequences	of	discrete	samples	from	the	con-
tinuous	 voltage	 or	 field	 data,	 and	 as	 such	 are	 subject	 to	
the	 Nyquist sampling theorem.	This	 theorem	 implies	
that	the	spectrum	of	a	time	series	may	only	correctly	re-
flect	frequencies	from	0 Hz	up	until	half	of	the	sampling	
rate.	This	rate,	½	of	the	sampling	or	digitization	frequency	
used	during	recording,	 is	also	 referred	 to	as	 the	Nyquist	
frequency	and	represents	an	upper	boundary	for	the	fre-
quency	domain	representation	of	a	time	series.	For	exam-
ple,	a	sampling	rate	of	500 Hz	would	result	in	a	Nyquist	
frequency	 of	 250  Hz,	 with	 this	 frequency	 serving	 as	 the	
upper	boundary	in	the	frequency	domain.	To	prevent	mis-
representation	of	signals	in	the	frequency	spectrum,	it	is	
mandatory	to	filter	out	any	signals	exceeding	the	Nyquist	
frequency	prior	to	analog-	to-	digital	conversion.	In	the	ab-
sence	of	robust	hardware	filtering	at	or	below	the	Nyquist	
frequency,	 these	under-	sampled	signals	will	result	 in	so-	
called	 aliasing,	 the	 misrepresentation	 of	 above	 Nyquist	
frequencies	 as	 lower-	frequency	 phenomena.	 A	 detailed	
discussion	and	tutorial	of	digital	sampling,	filtering,	and	
aliasing	is	provided	by	Cook	and	Miller (1992).

2 	 | 	 STUDY PLANNING AND DATA 
PREPROCESSING STEPS

Planning	a	study	for	spectral	analyses	involves	decisions	
regarding	a	set	of	general	topics,	shared	across	many	dif-
ferent	 analytical	 approaches.	 These	 include	 the	 concep-
tualization	and	definition	of	the	dependent	variables,	the	
experimental	design,	and	the	analysis	interval,	as	well	as	
decisions	regarding	the	settings	for	recording	and	preproc-
essing.	In	this	section,	we	discuss	several	of	 these	 issues	
and	suggest	ways	in	which	authors	may	address	them.

2.1	 |	 Conceptualizing spectral 
representations of neural data

As	described	above,	any	spectral	representation	of	neural	
data	may	reflect	unknown	proportions	of	broadband	activ-
ity	and	frequency-	specific	oscillatory	phenomena	which,	
while	more	narrow-	band	in	nature,	may	also	extend	over	
a	range	of	 frequencies.	Thus,	an	observed	change	 in	 the	
power	spectrum	may	reflect	a	change	in	activity	in	a	spe-
cific	frequency	range	or	may	reflect	a	change	in	the	offset	
and	exponent	of	 the	1/f	pink	noise,	or	a	combination	of	

both.	Several	methods	exist	to	identify	these	different	con-
tributions	(e.g.,	Donoghue	et	al., 2020;	He, 2014;	Hughes	
et	al., 2012).	At	the	conceptual	level,	these	methods	rest	on	
different	assumptions	regarding	how	the	frequency	spec-
trum	 is	 generated.	 There	 are	 two	 broad	 conceptualiza-
tions,	and	it	is	helpful	to	consider	them	explicitly.	First,	a	
power	spectrum	may	be	considered	as	resulting	from	a	set	
of	non-	overlapping	narrowband	activities	plus	stochastic	
error	(narrowband	model,	see	Model	1	below).	In	contrast,	
the	second	conceptualization	proposes	that	a	power	spec-
trum	may	reflect	the	sum	of	a	set	of	narrowband	activities	
added	to	a	background	formed	by	broadband	phenomena	
(narrowband+broadband	 model,	 see	 Models	 2a	 and	 2b	
below)	plus	stochastic	error.	Formally,	these	two	models	
correspond	to	the	following	equations	describing	activity	
at	a	frequency	f:

Although	both	models	are	mathematically	viable,	the	model	
chosen	to	represent	the	power	spectrum	leads	to	fundamen-
tal	differences	in	the	estimation	of	the	parameters	entered	in	
the	statistical	analyses	and	is	therefore	critical	for	the	prac-
tical	and	theoretical	inferences	that	are	made.	Traditionally,	
analyses	 in	the	frequency	domain	were	conducted	implic-
itly	 assuming	 the	 narrowband	 model	 (e.g.,	 Lehmann	 et	
al., 1987).	However,	it	should	be	noted	that	some	contribu-
tion	of	non-	oscillatory	broadband	(1/f)	phenomena	is	likely	
present	in	most	data	sets	and,	therefore,	Model	2	is	typically	
more	realistic.	There	are	several	different	methods	for	con-
ducting	data	analyses	under	the	narrowband	+	broadband	
model	that	are	discussed	later	in	this	document.

Another	conceptual	distinction	refers	to	the	extent	to	
which	differences	in	spectral	power	are	thought	to	reflect	
the	 multiplicative	 modulation	 of	 narrowband	 activity,	
whereby	 a	 frequency	 band	 only	 reflects	 a	 single	 type	 of	
activity	that	can	change	over	time,	versus	additive	mech-
anisms,	in	which	changes	in	power	reflect	the	summation	
of	 different	 types	 of	 activity.	 Considering	 multiplicative	
versus	 additive	 mechanisms	 is	 important	 because	 this	
consideration	impact	how	the	spectrum	is	quantified:	The	
narrowband	model	 (see	Model	1)	 readily	accommodates	
both	multiplicative	and	additive	mechanisms,	since	only	
one	parameter,	the	intensity	of	the	narrowband	effect,	is	
estimated	for	each	frequency.	Many	traditional	studies	in	
so-	called	quantitative	EEG	research	adopt	this	perspective	

For the narrowbandmodel:

Model 1: Power (f ) =Narrowband (f ) +error

For the narrowband+broadband model:

Model 2a: Power (f ) =Narrowband (f ) +Broadband (f ) +error

Or more specifically:

Model 2b: Power (f ) =Narrowband (f ) +1∕f (f ) +error
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(Nuwer,  1997;	 Pivik	 et	 al.,  1993).	 Therefore,	 nonlinear	
transformations	of	the	observed	power,	such	as	log	or	deci-
bel	transformations,	which	are	consistent	with	the	multi-
plicative	model,	are	mathematically	appropriate.	However,	
if	the	narrowband+broadband	model	is	adopted,	two	pa-
rameters	 exist	 for	 each	 frequency:	 the	 respective	 contri-
butions	of	narrowband	and	of	broadband	components	to	
the	observed	power.	Therefore,	nonlinear	transformations	
should	not	be	applied	 to	 the	 raw	observed	power	before	
separating	the	contributions	due	to	each	component,	be-
cause	this	would	lead	to	incorrect	estimation	of	these	two	
parameters.	For	example,	one	of	the	parameters	could	be	
systematically	over-		or	under-	estimated	depending	on	the	
value	of	 the	other	(Gyurkovics	et	al., 2021).	Several	pro-
cedures	are	available	 to	achieve	 this	 separation	 if	one	 is	
interested	 in	 applying	 nonlinear	 transformations	 under	
the	 narrowband+broadband	 model	 choice	 (Clements	
et	 al.,  2021;	 Donoghue	 et	 al.,  2020;	 He,  2014;	 Hughes	
et	al., 2012).

In	 summary,	 when	 quantifying	 frequency	 domain	
data,	 results	may	be	strongly	 influenced	by	 the	underly-
ing	 model	 that	 guides	 the	 interpretation	 process.	 When	
oscillatory	activity	 is	 the	focus	of	analysis	 in	the	context	
of	the	narrowband+broadband	model,	it	is	critical	to	take	
into	account	concurrent	non-	oscillatory	activity,	 such	as	
1/f	noise.	Importantly,	the	model	adopted,	whether	explic-
itly	or	implicitly,	affects	the	outcome	and	interpretation	of	
the	data,	such	as	when	differences	in	spectral	power	are	
interpreted	 as	 only	 due	 to	 narrowband	 activity	 or	 when	
using	nonlinear	transformations.	It is therefore recom-
mended that the conceptualization of the spectral 
composition be made explicit and justified when 
making inferences from frequency domain repre-
sentations in articles and reports.

2.2	 |	 Defining and selecting 
frequency bands

Paralleling	the	plethora	of	methods	available	for	extract-
ing	dependent	variables	from	time	domain	data,	such	as	
ERPs,	many	different	approaches	are	used	for	measuring	
frequency	 domain	 or	 time-	frequency	 phenomena.	 For	
decades,	 researchers	 have	 relied	 on	 averaging	 spectral	
power	across	 frequencies	within	 so-	called	canonical	 fre-
quency	bands	to	obtain	indices	thought	to	relate	to	certain	
behavioral	and	cognitive	processes.	Traditional	demarca-
tions	of	canonical	frequency	bands	have	typically	defined	
the	delta	(<3 Hz),	 theta	(4–	7 Hz),	alpha	(8–	12 Hz),	beta	
(13–	30  Hz),	 and	 gamma	 (>30  Hz)	 bands.	 As	 discussed	
in	Section 2.1,	raw	band	power	derived	from	a	spectrum	
will	 reflect	 a	 mixture	 of	 oscillatory	 and	 non-	oscillatory	
processes.	It	is	thus	recommended	to	consider	these	two	

sources	of	power	and	specify	 the	assumptions	regarding	
contributing	processes.

In	 addition,	 the	 literature	 is	 increasingly	 converging	
on	 showing	 that	 many	 canonical	 frequency	 bands	 listed	
in	textbooks	and	recent	guideline	articles	are	poorly	rep-
licable	 across	 different	 populations,	 and	 across	 various	
tasks	 and	 paradigms.	 For	 example,	 the	 frequency	 of	 the	
occipital	alpha	signal	(around	10 Hz	in	young	adults,	see	
Figure 4)	changes	substantially	over	the	lifespan	(Hashemi	
et	al., 2016;	Polich, 1997).	Furthermore,	experimental	and	
individual	 difference	 effects	 that	 have	 been	 traditionally	
linked	 to	 specific	 canonical	 frequency	 bands	 have	 been	
commonly	observed	at	frequencies	outside	these	canonical	
bands	(Newson	&	Thiagarajan, 2019;	Shapiro	et	al., 2017).	
As	such,	forming	and	testing	hypotheses	regarding	effects	
in	 canonical	 bands	 without	 establishing	 the	 specificity	
and	sensitivity	of	 the	dependent	variable	may	yield	mis-
leading	 or	 ungeneralizable	 results.	 With	 the	 advent	 of	
advanced	statistical	techniques	(see	Section 4.1),	it	is	pos-
sible	to	apply	mass	univariate	techniques	with	appropriate	
corrections	for	multiple	comparisons	to	examine	multiple	
frequencies	 (Groppe	 et	 al.,  2011;	 Maris,  2012),	 aiding	 in	
linking	specific	frequency	domain	phenomena	to	the	ma-
nipulation	or	comparison	of	interest.

2.3	 |	 The trade- off between temporal 
resolution and frequency resolution

As	 discussed	 in	 Section  1.3,	 quantifying	 the	 power	 and	
phase	of	a	time	series	in	the	frequency	domain	requires	in-
tegrating	information	across	a	period	of	time.	Frequency	
domain	analyses	are	subject	to	the	Fourier uncertainty 
principle,	which	holds	that	the	number	of	available	fre-
quency	bins	(e.g.,	ticks	on	the	x	axis,	maximally	extending	
between	0 Hz	and	the	Nyquist	frequency)	increases	with	
the	 temporal	 duration	 of	 the	 time	 segment	 used	 for	 the	
spectral	analysis	(temporal integration window).	Thus,	
spectra	computed	from	longer	time	series	have	greater	fre-
quency	detail	than	do	spectra	computed	from	shorter	time	
series.	As	a	result,	higher	 frequency	resolution	comes	at	
the	 cost	 of	 lower	 time	 resolution.	 Consideration	 of	 this	
tradeoff	is	particularly	important	because	most	EEG/MEG	
signals	are	not	stationary	for	long.	This	trade-	off	between	
temporal	and	frequency	specificity	is	inherent	in	the	ma-
jority	of	methods	discussed	in	this	document.

The	 Fourier	 uncertainty	 principle	 impacts	 study	 de-
signs	 in	 which	 a	 researcher	 may	 wish	 to	 include	 longer	
versus	shorter	inter-	trial	intervals,	or	consider	shorter	ver-
sus	 longer	 trial	 durations	 to	 ensure	 sensitivity	 to	 a	 time	
range	 of	 interest,	 while	 also	 ensuring	 robust	 estimation	
of	the	spectrum.	Depending	on	the	aims	of	the	study,	re-
searchers	 may	 want	 to	 emphasize	 time	 resolution	 (e.g.,	



   | 11 of 37Keil et al.

using	 shorter	 analysis	 intervals),	 frequency	 resolution	
(e.g.,	using	 longer	analysis	 intervals),	or	select	a	specific	
trade-	off	 between	 them,	 accomplished	 by	 methods	 such	
as	wavelet	transforms	or	multitaper	analyses.	For	example,	
researchers	 interested	 in	 short	 bursts	 of	 high-	frequency	
broadband	 signals	 at	 frequencies	 above	 40  Hz	 may	 not	
be	concerned	with	specific	 frequencies,	but	may	wish	to	
characterize	the	timing	of	these	neural	events	in	sufficient	
detail.	 By	 contrast,	 researchers	 interested	 in	 changes	 in	
alpha	peak	frequency	over	the	life	span	may	wish	to	em-
phasize	frequency	resolution,	by	ensuring	sufficient	dura-
tion	of	the	analytical	intervals	examined.	Many	methods	
for	 time-	frequency	 analysis,	 as	 discussed	 in	 Section  3.2	
below,	also	involve	trade-	offs	between	time	and	frequency	
resolution	 for	 different	 frequency	 ranges	 (Tallon-	Baudry	
&	 Bertrand,  1999).	 To	 enable	 reproduction	 of	 these	 al-
gorithms	within	and	across	labs,	it	is	recommended	that	
authors	report	the	duration	of	the	analytical	time	interval	
used	for	the	frequency	domain	analyses.	It	is	also	recom-
mended	that	they	report	the	resulting	time	and	frequency	
resolution	of	the	spectrum	or	of	the	time-	frequency	repre-
sentations	at	the	frequencies	of	interest.

Many	 algorithms	 and	 widely	 used	 pipelines	 include	
an	 option	 to	 increase	 the	 frequency	 detail	 of	 a	 spectral	
representation	 by	 adding	 zeros	 to	 the	 time	 series	 en-
tered	in	the	analysis.	This	practice	is	referred	to	as	zero- 
padding.	 Zero-	padding	 may	 be	 helpful	 in	 situations	
where	a	given	 frequency	resolution	 is	desirable	but	can-
not	be	attained	with	the	interval	duration	available	from	
the	 time-	segmented	data.	Such	situations	occur	 in	cases	
where	 researchers	 wish	 to	 quantify	 the	 power	 at	 a	 driv-
ing	frequency	evoked	by	oscillatory	stimulation	of	a	sen-
sory	system.	For	example,	researchers	conducting	a	study	
with	auditory	steady-	state	responses	may	be	interested	in	
the	 41.6  Hz	 auditory	 response	 to	 1-	s	 sound	 stimuli	 that	
are	 amplitude-	modulated	 at	 that	 exact	 frequency.	 A	 fre-
quency	analysis	of	the	1-	s	stimulation	intervals	would	re-
sult	in	a	spectrum	with	1 Hz	resolution,	failing	to	include	
a	 frequency	 bin	 for	 the	 frequency	 of	 interest,	 41.6  Hz.	
This	is	because	frequency	bins	would	increase	in	constant	
steps	of	1 Hz,	eventually	yielding	bins	of	41 Hz	and	42 Hz,	
which	do	not	 fully	capture	 the	41.6 Hz	 frequency	of	 in-
terest.	Thus,	 the	researchers	may	opt	to	add	zeros	at	 the	
beginning	and	end	of	each	epoch	to	be	analyzed,	to	attain	
the	 desired	 frequency	 resolution.	 In	 this	 case,	 they	 may	
add	750 ms	of	zeros	at	the	beginning	and	end	of	each	1-	s	
data	segment.	The	resulting	epoch	duration	of	2.5 s	results	
in	 a	 frequency	 resolution	 of	 1/2.5  =  0.4  Hz.	 Starting	 at	
0 Hz	and	extending	in	even	steps	of	0.4 Hz,	the	spectrum	
will	now	include	a	frequency	bin	corresponding	to	a	basis	
function	 at	 41.6  Hz,	 allowing	 for	 clearer	 quantification	
of	the	auditory	steady-	state	response.	It	should	be	noted,	
however,	 that	 zero-	padding	 does	 not	 increase	 the	 true	

underlying	 frequency	resolution,	as	no	new	 information	
is	added.	Instead,	it	is	a	form	of	interpolation	using	the	ex-
isting	data.	In	cases	where	zero-	padding	is	used,	it	should	
be	fully	reported	in	the	manuscript,	including	the	number	
and	location	of	the	added	zeros	(i.e.,	before,	after,	or	before	
and	after)	relative	to	the	empirical	time	series.

2.4	 |	 Stationarity of the signal

Stationarity,	 often	 conceptualized	 as	 covariance	 station-
arity,	 indicates	 that	 low-	order	 statistical	 properties	 of	
the	 time	 domain	 signal	 (e.g.,	 the	 mean	 and	 variance;	 in	
the	case	of	sinusoidal	data,	 this	 includes	 frequency,	am-
plitude,	and	phase)	do	not	change	over	time.	This	is	rel-
evant	because	most	spectral	transformations,	such	as	the	
Fourier	transform,	veridically	represent	all	aspects	of	the	
time	 series	 in	 the	 complex	 spectrum.	 These	 aspects	 in-
clude	 transient	 and	 nonstationary	 signals	 in	 addition	 to	
oscillatory	processes,	which	are	more	likely	to	be	station-
ary.	 Thus,	 interpretation	 of	 a	 given	 frequency	 spectrum	
partly	depends	on	the	extent	to	which	the	underlying	pro-
cesses	were	stationary	and	extended	throughout	the	time	
interval	entering	the	analysis.

Stationarity	is	also	an	assumption	of	many	non-	Fourier	
algorithms	for	spectral	analysis,	such	as	half-	wave	analysis	
and	autoregression	(see	Section 3.1.4),	both	of	which	will	
yield	 misleading	 results	 if	 conducted	 on	 nonstationary	
signals.	One	useful	approach	to	addressing	this	problem	is	
to	quantify	stationarity,	using	suitable	statistical	tests	such	
as	 the	augmented	Dickey-	Fuller	 test	 (Elliott	et	al., 1996)	
or	 the	 Kwaitkowski	 Phillips	 Schmidt	 Shin	 test	 (KPSS;	
Kwaitkowski	et	al., 1992).	It	is	recommended	that	authors	
detail	the	extent	to	which	their	data	were	stationary	and	
the	tests	used	to	confirm	that	they	were	so,	along	with	any	
transforms,	 such	 as	 differentiating	 or	 filtering,	 aimed	 to	
achieve	stationarity.

2.5	 |	 Artifacts and artifact control

Neurophysiological	 time	 series	 are	 prone	 to	 a	 variety	 of	
artifacts,	defined	as	signals	that	do	not	reflect	the	neural	
processes	 targeted	 by	 the	 analysis.	 The	 detection,	 con-
trol,	 and	 correction	 of	 these	 artifacts	 is	 a	 rich	 topic	 and	
discussed	elsewhere	more	broadly,	including	recommen-
dations	 for	 the	 implementation	 of	 these	 methods	 (Keil	
et	al., 2014).	This	section	is	focused	on	aspects	of	artifact	
detection	 and	 control	 that	 are	 particularly	 pertinent	 for	
studies	 using	 frequency	 domain	 and	 time-	frequency	 do-
main	techniques.

As	 discussed	 in	 Sections  1.2,	 1.3,	 and	 2.1,	 spectral	
representations	contain	all	aspects	of	the	original	time	
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series,	including	non-	oscillatory,	transient	events	such	
as	 ERPs	 or	 broadband	 phenomena	 (e.g.,	 blinks),	 but	
also	oscillatory	events	 that	may	have	non-	cerebral	or-
igin	 such	 as	 electromyographic	 (EMG)	 signals	 from	
facial	and	bodily	muscles.	As	 such,	 spectral	 represen-
tations	 will	 also	 fully	 reflect	 nonphysiological	 arti-
facts	such	as	voltage	jumps	caused	by	loose	electrodes,	
50/60 Hz	line	noise,	and	rapid	jumps	in	voltage	created	
by	 movement	 of	 the	 participant	 or	 equipment.	 Thus,	
carefully	 examining	 the	 time	 series	 and	 the	 spectrum	
before	and	after	artifact	rejection	and	artifact	control	is	
recommended	to	ensure	the	validity	of	 the	dependent	
variable	of	interest.	In	addition	to	visual	inspection	and	
semi-	automatic	 artifact	 control,	 automated	 pipelines	
are	increasingly	used	to	accomplish	these	steps.	In	all	
these	cases	the	pipeline	usage,	settings,	and	parameters	
should	be	fully	documented	in	a	published	manuscript.	
The	following	paragraphs	describe	major	physiological	
artifacts	that	may	threaten	the	validity	of	frequency	do-
main	 analyses,	 along	 with	 approaches	 for	 controlling	
them.	 Figure  6	 illustrates	 how	 retaining	 epochs	 with	
common	 artifacts	 affects	 spectral	 and	 time-	frequency	
analyses	in	a	data	set	with	20	artifact-	free	trials,	shown	
in	Figure 6a.

2.5.1	 |	 Ocular	artifacts

A	variety	of	artifacts	arise	from	eye-	related	activity.	These	
include	eye	movements,	in	which	the	corneo-	retinal	di-
pole,	 extending	 between	 the	 negatively	 charged	 retina	
and	 the	 positively	 charged	 cornea,	 creates	 changes	 in	
transient	voltage	and	field	gradients	across	the	head	as	
the	eyes	move.	Eye	blinks	(i.e.,	complete	or	partial	eye	
lid	closures)	cause	similar,	abrupt	changes	 in	 the	elec-
tromagnetic	 field,	 maximal	 near	 frontal	 sensors	 (see	
Figure  6b).	 Such	 sharp,	 transient	 changes	 in	 the	 time	
series	 tend	 to	 be	 represented	 as	 strong	 broadband	 sig-
nals	 in	 spectral	 analyses	 in	 that	 they	 extend	 across	 a	
wide	range	of	frequencies	and	may	thus	be	mistaken	as	
heightened	 power	 in	 a	 specific	 band	 (Figure  6b,	 right	
panel),	 especially	 if	 broadband	 contributions	 are	 not	
separately	 considered	 in	 the	analysis	 (see	Section 2.1).	
Another	source	of	artifact	includes	microsaccades,	also	
referred	 to	 as	 fixational	 saccades,	 which	 are	 associ-
ated	with	spike	potentials	in	neural	time	series	(Plöchl	
et	 al.,  2012).	 The	 voltage	 changes	 caused	 by	 microsac-
cades	also	tend	to	appear	as	broadband	signals	in	spec-
tral	analyses,	often	in	the	higher	frequency	ranges,	and	
thus	may	be	misinterpreted	in	a	fashion	similar	to	that	

F I G U R E  6  Typical	artifacts	affecting	frequency	domain	and	time-	frequency	domain	analyses	of	neural	time	series	data.	Left	column	
shows	one	of	the	20	EEG	trials,	segmented	relative	to	the	onset	of	a	visual	working	memory	task,	and	either	free	of	artifact	(a),	or	affected	by	
three	frequent	artifact	types	(b:	Sharp	transient,	c:	Drift,	d:	EMG).	The	middle	column	shows	the	average	(across	20	trials)	power	spectrum	
of	the	time	period	between	0	and	6 s,	with	one	trial	(left	column)	affected	by	different	artifact	types	(red	lines)	compared	to	the	average	of	
20	artifact-	free	spectra	(a,	middle	panel).	The	right	column	shows	results	of	a	wavelet	transform	of	the	same	data,	with	(b	through	d)	and	
without	(a)	the	contaminated	trial	included.	Note	that	the	presence	of	one	trial	with	a	strong	artifact	is	sufficient	for	inducing	pronounced	
changes	in	both	the	frequency	domain	and	time-	frequency	representation.	See	text	for	artifact	description
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of	 transient	eye	movements.	Under	certain	conditions,	
these	 ocular	 artifacts	 have	 been	 shown	 to	 greatly	 af-
fect	 spectral	 analyses	 of	 neural	 time	 series,	 including	
time-	frequency	analyses	(Yuval-	Greenberg	et	al., 2008).	
EMG	signals,	arising	 from	ocular	muscles,	 such	as	 the	
musculus	 orbicularis	 oculi,	 may	 introduce	 oscillatory	
as	 well	 as	 non-	oscillatory	 artifacts,	 predominantly	 at	
frontal	 sensors.	 EMG	 artifacts	 are	 discussed	 in	 greater	
detail	in	Section 2.5.4	below.	It	is	recommended	that	ar-
tifact	 correction	 in	 studies	 of	 oscillatory	 brain	 activity	
consider	the	unique	challenges	discussed	above,	beyond	
what	has	been	recommended	 for	electromagnetic	 time	
series	 analyses	 more	 broadly	 (Keil	 et	 al.,  2014;	 Pernet	
et	 al.,  2020;	 Picton	 et	 al.,  2000).	 Specifically,	 authors	
may	wish	to	report	the	exact	types	of	ocular	artifacts	re-
moved	from	the	data,	instead	of	referring	just	to	artifact	
removal	more	broadly,	by	including	specific	information	
on	the	extent	to	which	blinks,	saccades,	or	oculomotor	
EMG	were	controlled	for	and	how,	respectively.	Because	
most	 ocular	 artifacts	 have	 a	 characteristic	 topography,	
visible	 in	 most	 spatial	 representations,	 it	 may	 be	 use-
ful	to	include	a	topographical	illustration	that	includes	
frontal	sensors,	allowing	readers	to	assess	the	presence	
of	any	residual	ocular	activity	 in	 the	signal	of	 interest.	
Finally,	 it	 may	 be	 necessary	 to	 conduct	 analyses	 that	
quantify	 the	 relationship	 between	 the	 occurrence	 of	 a	
given	ocular	artifact,	such	as	microsaccades,	and	varia-
tions	in	the	dependent	variable,	to	rule	out	that	the	out-
come	measure	 is	driven	by	or	 confounded	with	ocular	
artifacts.	Many	analysis	pipelines	contain	algorithms	for	
detecting	 and	 controlling	 ocular	 artifacts.	 Their	 usage,	
parameter	 settings,	 and	 the	 numbers	 of	 affected	 trials	
and	channels	should	be	reported	in	the	manuscript.

2.5.2	 |	 Cardiac	and	respiratory	artifacts

Cardiac	artifacts	include	the	direct	interference	of	voltage	
gradients	or	magnetic	fields	generated	by	the	cardiac	cycle	
at	cranial	sensor	locations	(Sun	et	al., 2016),	as	well	as	ar-
tifacts	 related	 to	 associated	 cardiovascular	 (blood	 flow)	
processes,	 often	 referred	 to	 as	 pulse	 artifacts	 (Tamburro	
et	al., 2019).	These	two	types	of	cardiac	artifacts	differ	in	
their	 temporal	 profile,	 with	 vascular	 artifacts	 showing	 a	
slower,	 smoother	 time	 course	 and	 electrical	 artifacts	 re-
flecting	the	cardiac	cycle,	thus	including	a	sharp	transient	
deflection	corresponding	to	the	R-	wave	of	the	electrocar-
diogram.	These	artifacts	may	introduce	non-	cerebral	sig-
nals	at	a	variety	of	frequencies,	ranging	from	below	1 Hz	
to	 broadband	 signals	 introduced	 by	 the	 sharp	 transient	
caused	by	the	R-	wave.	The	prominence	of	these	artifacts	
can	be	reduced	by	the	choice	of	an	appropriate	recording	
reference	(see	Keil	et	al., 2014).

Respiratory	 activity	 is	 likewise	 associated	 with	 two	
types	of	artifacts.	The	first	(Figure 6c)	is	related	to	the	slow	
and	rhythmic	movements	of	the	body,	affecting	sensor	po-
sition	relative	to	the	head	(MEG)	or	influencing	electrode	
impedance	though	motion	of	the	head	or	electrode	leads	
(EEG).	 The	 second	 type	 of	 artifact	 linked	 to	 respiration	
is	produced	by	more	abrupt	changes	in	body	position	co-	
occurring	 with	 inhaling	 and	 exhaling,	 again	 prompting	
changes	 of	 head	 position	 and/or	 slight	 moving	 of	 scalp	
sensors,	reflected	in	peaks	in	the	recorded	time	series.

As	discussed	in	Sections 1.2	and	2.1,	both	cardiac	and	
respiratory	artifacts	will	be	represented	in	spectral	analy-
ses	and	may	not	be	readily	identifiable	as	artifactual	after	
being	included	in	the	spectrum	(see	Figure 6c,	middle	and	
right	panels,	for	an	illustration	of	low-	frequency	artifacts	
induced	by	slow	drift).	Thus,	examining	the	time	domain	
signals	used	for	frequency	domain	analyses	is	particularly	
important.	Researchers	may	assume	that	averaging	across	
multiple	trials	may	attenuate	the	contribution	of	these	sig-
nals,	as	long	as	artifacts	are	not	systematically	related	to	
the	interval	timing	used	for	averaging	and	that	a	sufficient	
number	 of	 trials	 is	 available.	 Both	 conditions	 are	 often	
not	met.	For	example,	heart	rate	may	systematically	vary	
across	the	analytical	time	segment	in	studies	of	emotional	
reactivity	or	attention,	when	an	attended	or	alerting	stim-
ulus	is	presented,	and	in	studies	where	the	experimental	
paradigm	does	not	involve	trial	averaging,	such	as	in	stud-
ies	of	resting	states	or	sleep.	Several	methods	for	remov-
ing	cardiac	and	respiratory	artifacts	exist,	some	of	which	
rely	on	multivariate	analysis	of	the	data	through	principal	
component	 analysis	 (PCA)	 or	 independent	 component	
analysis	 (ICA).	 To	 facilitate	 replication,	 these	 methods	
should	be	fully	described	with	appropriate	citations,	and	
user	 settings	 and	 interactive	 choices	 reported,	 including	
the	component	selection	criteria,	number	of	components	
selected	for	each	participant,	and	algorithm	used,	if	pos-
sible,	with	a	reference	to	the	original	manuscript	guiding	
the	choice.

2.5.3	 |	 Electrodermal	(sweating)	artifacts

Artifacts	 produced	 by	 sweat	 gland	 activity	 share	 several	
properties	with	cardiac	and	respiratory	artifacts	in	that	the	
associated	 changes	 in	 impedance	 prompt	 slow	 changes,	
typically	 in	 the	 range	 well	 below	 1  Hz	 (see	 Figure  6c).	
Paralleling	 cardiac	 and	 respiratory	 artifacts,	 perspiration-	
related	 artifacts	 may	 also	 be	 misinterpreted	 as	 slow	 EEG	
activity	and	may	be	identified	and	controlled	for	with	the	
same	 methods	 discussed	 in	 Section  2.5.2.	 In	 addition	 to	
these	slow	artifacts,	in	EEG	recordings	the	influx	of	sweat	
may	 also	 cause	 rapid	 changes	 in	 electrode	 impedance	 as	
well	 as	 short-	circuiting	 sensors,	 often	 reflected	 in	 brief	
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voltage	spikes	(Kappenman	&	Luck, 2010).	This	has	been	
a	 concern	 particularly	 when	 using	 dry	 electrode	 systems	
in	which	the	humidity	of	the	skin	serves	as	the	electrolyte	
facilitating	conductance.	The	identification	and	control	of	
such	sweat	spikes	in	voltage	time	series	parallels	those	of	
other	rapid	transient	artifacts,	including	faulty	electrodes,	
which	 are	 identifiable	 by	 their	 specific	 topography.	 They	
are	 typically	controlled	by	removal	or	 interpolation	of	af-
fected	channels,	or	by	removal	of	the	affected	time	segment.	
Experimenters	should	work	to	control	the	environmental	
conditions	to	minimize	these	artifacts	when	possible.

2.5.4	 |	 Non-	ocular	(facial,	neck)	EMG	and	
other	motor	artifacts

Movement	 of	 the	 neck,	 extremities,	 and	 facial	 muscles,	
as	 well	 as	 talking,	 shivering,	 sniffling,	 hiccupping,	 and	
glossokinetic	 (tongue)	 movements	 introduce	 artifacts	 in	
EEG	and	MEG	recordings.	Some	of	the	EMG	phenomena	
caused	by	these	processes	are	oscillatory	in	nature	in	that	
they	 prompt	 rhythmic	 field	 changes	 at	 specific	 frequen-
cies,	typically	in	higher	frequencies.	As	such,	these	artifacts	
tend	to	threaten	validity,	especially	for	studies	focusing	on	
higher-	frequency	 oscillations,	 which	 may	 overlap	 with	
the	 EMG	 spectrum,	 which	 tends	 to	 contain	 substantial	
power	in	frequencies	above	20 Hz	(see	Figure 6d,	middle	
and	right	panels).	It	 is	recommended	that	these	artifacts	
be	identified	through	their	topography,	which	is	expected	
to	be	at	its	maximum	near	the	generating	muscle	groups,	
as	well	as	through	inspection	of	the	time	series.	In	addi-
tion,	multivariate	approaches	(e.g.,	PCA	and	ICA),	as	dis-
cussed	below	in	Section 4.1,	may	be	suitable	to	detect	and	
remove	variance	related	to	these	motor	artifacts.

2.6	 |	 Referencing and spatial 
transformations

A	 substantial	 number	 of	 EEG	 and	 MEG	 studies	 aim	 to	
quantify	 spatial	 dependencies,	 across	 sensors	 or	 across	
brain	regions.	Often,	the	overarching	goal	of	these	analyses	
is	to	characterize	neural	connectivity	across	brain	regions.	
Various	 algorithms	 exist	 to	 measure	 spatial	 dependen-
cies,	including	the	methods	described	in	Section 3.4	below	
(Ding	 et	 al.,  2011;	 Nolte	 et	 al.,  2004;	 Nunez,  1996;	 Stam	
et	al., 2007).	Both	volume	conduction	effects	(i.e.,	spreading	
of	voltage	within	the	brain	and	across	the	scalp)	and	dipo-
lar	fields	may	lead	to	spurious	positive	results,	suggesting	
oscillatory	 interactions	 among	 different	 locations	 where	
none	exist	(Nunez	et	al., 1997).	Thus,	many	of	the	available	
metrics	 benefit	 from—	and	 some	 require—	spatial	 trans-
formations	of	EEG	and	MEG	data.	For	example,	measures	

of	 inter-	site	 dependence	 (e.g.,	 inter-	site	 phase-	locking,	
magnitude-	squared	 coherence)	 are	 more	 readily	 inter-
pretable	 if	applied	 to	Laplacian	or	current	source	density	
(CSD)	 transformations	 of	 EEG	 data	 (Nunez	 et	 al.,  1997).	
The	 CSD	 is	 based	 on	 the	 second	 spatial	 derivative	 of	 the	
EEG	scalp	potential,	thus	reducing	the	impact	of	constant	
voltage	shifts	as	produced	by	volume	conduction.	As	is	evi-
dent	from	these	examples,	spatial	transformations	are	often	
used	as	preprocessing	steps,	applied	to	single-	trial	data,	or	
to	averaged	data.	The	order	in	which	these	steps	are	applied	
is	crucial	for	the	pipeline	to	yield	interpretable	results.

For	example,	performing	spectral	analyses	on	absolute	
source	 strength	 values	 rendered	 by	 a	 distributed	 source	
model	projection	 is	 incorrect,	because	 the	phase	 informa-
tion	of	the	underlying	signal	is	no	longer	present	in	absolute	
source	 strength	 values.	 Instead,	 spectral	 transformations	
will	have	to	be	performed	on	source	representations	that	still	
possess	phase	information	(Hauk	et	al., 2002).	In	a	similar	
vein,	performing	source	estimation	on	power	spectra	or	on	
time-	varying	power	is	also	incorrect	in	most	cases,	because	
the	phase/polarity	information	needed	is	no	longer	present	
and	the	data	are	not	in	the	unit	(e.g.,	voltage,	magnetic	field	
strength)	 that	 the	 source	 projection	 algorithms	 expects.	
Instead,	spatial	transformations,	such	as	CSD	or	source	es-
timation,	may	be	applied	on	the	real	and	imaginary	parts	of	
the	complex	spectrum	that	are	output	by	a	Fourier	analysis,	
or	on	corresponding	complex	elements	form	other	analyses	
that	 are	 still	 endowed	 with	 phase	 information.	The	 flow-
chart	in	Figure 7	summarizes	these	issues.

In	summary,	it	is	strongly	recommended	that	authors	
report	 the	 reference	 used	 during	 EEG	 recording,	 along	
with	 any	 subsequent	 spatial	 preprocessing	 steps	 and	
transformations,	and	the	order	in	which	they	are	applied.	
Additional	methods	for	heightening	the	validity	of	inter-	
site	analyses	are	discussed	in	Section 3.4.

3 	 | 	 RECOMMENDATIONS 
FOR REPORTING ON SPECIFIC 
ANALYTICAL TECHNIQUES

This	 section	 gives	 specific	 recommendations	 for	 widely	
used	methods.	Brief	explanations	are	given,	some	of	which	
expand	concepts	introduced	above.	Summary	recommen-
dations	are	given	at	the	end	of	each	sub-	section,	and	read-
ers	are	also	invited	to	use	the	corresponding	checklists	at	
the	end	of	this	document.

3.1	 |	 Spectral analyses

As	 discussed	 in	 Section  1.1,	 the	 spectrum	 of	 a	 neu-
ral	 time	series	 is	a	 representation	 in	which	 the	x	axis	
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shows	frequency	 in	Hz,	and	the	y	axis	shows	spectral	
amplitude,	power,	or	phase	at	each	of	the	frequencies	
plotted	 on	 the	 x	 axis	 (see	 Figure  1,	 right	 panel).	 The	
most	 widely	 used	 form	 of	 spectral	 analysis	 technique	
in	neuroscience	is	a	variant	of	Fourier	analysis,	called	
the	 discrete	 Fourier	 transform	 (DFT).	 The	 output	 of	
the	 DFT	 is	 a	 complex	 spectrum,	 which	 contains	 two	
values	 for	 each	 frequency,	 the	 real	 (i.e.,	 cosine)	 and	
imaginary	 (i.e.,	 sine)	 components	 (see	 Figure  5	 and	
Section 1.3).	From	these	components,	 the	power	(i.e.,	
magnitude,	 computed	 as	 the	 modulus	 of	 the	 two	 val-
ues)	and	phase	(i.e.,	relative	position	in	the	oscillatory	
cycle,	 computed	 as	 the	 arctangent	 of	 the	 imaginary	
over	the	real	component)	can	be	determined,	after	tak-
ing	 into	account	 two	properties	of	 the	raw	DFT	spec-
trum:	First,	it	is	symmetrical	in	nature,	mirrored	at	the	
Nyquist	frequency	(i.e.,	half	of	the	sampling	rate),	and	
the	portion	above	Nyquist	is	not	interpretable;	Second,	
because	 DFT	 is	 mathematically	 an	 integral	 across	
time,	the	raw	power	increases	with	the	duration	of	the	
input	segments.

3.1.1	 |	 Normalization	of	the	spectrum

To	 facilitate	 interpretability	 of	 the	 power	 values	 across	
different	 studies	 using	 different	 interval	 lengths,	 many	
available	 implementations	 for	 neural	 time	 series	 analy-
sis	 contain	 normalizations	 for	 the	 length	 of	 the	 ana-
lytical	 segment	 used	 to	 calculate	 the	 spectrum,	 often	 by	
dividing	 the	 power	 by	 the	 number	 of	 bins	 in	 the	 spec-
trum.	 Normalization	 by	 the	 length	 of	 time	 often	 results	

in	a	density	measure	with	a	unit	of	power	(e.g.,	μV2/Hz).	
Further	normalization	steps	involve	multiplying	the	valid,	
lower	 half	 of	 the	 power	 spectrum	 by	 2,	 or	 equivalently	
multiplying	it	by	its	complex	conjugate,	and	discarding	the	
invalid	portion	above	Nyquist	to	correct	for	the	allocation	
of	power	to	the	invalid	portion	the	spectrum.	Reporting	on	
any	normalization	steps	involved	in	the	spectral	analysis	
is	strongly	encouraged,	because	it	enables	the	interpreta-
tion	of	published	spectral	power	values	and	fosters	repli-
cability	and	reproducibility	of	findings.	See	https://github.
com/kylem	ath/Mathe	wsonM	atlab	Tools/	blob/maste	r/
EEG_analy	sis/kyle_fft.m	for	an	example	implementation	
in	MATLAB	code.

3.1.2	 |	 Measuring	band	power	
from	the	spectrum

As	discussed	in	Sections 2.1	and	2.2,	specificity	of	effects	
in	a	frequency	band	of	interest	depends	on	a	range	of	as-
sumptions	 regarding	 the	 composition	 of	 the	 spectrum.	
Regardless	 of	 how	 these	 assumptions	 were	 addressed,	
specificity	of	effects	in	a	frequency	band	may	be	tested	
by	 entering	 other	 control	 band	 power	 values	 from	 the	
same	 spectrum	 in	 the	 analysis	 and	 using	 appropriate	
statistical	models	to	examine	specificity	(see	Section 4.1	
for	examples	and	guidelines).	When	using	band	power,	
it	is	generally	recommended	to	report	the	full	spectrum	
from	which	the	band	was	extracted,	along	with	the	way	
band	power	was	measured	(e.g.,	mean,	median,	peak),	
and	how	1/f	effects	or	other	spectral	shape	effects	were	
addressed.

F I G U R E  7  Combining	source	estimation	(including	similar	spatial	transformation	such	as	CSD)	and	spectral	analyses	in	a	sequential	
analysis	pipeline.	Pipelines	with	inappropriate	ordering	of	analytical	steps	(shown	in	red)	may	yield	non-	interpretable	results,	or	results	
that	do	not	reflect	what	the	user	intends.	For	example,	most	source	estimation	algorithms	assume	that	the	original	polarity	in	EEG/MEG	
recordings	is	present	and	thus	yield	uninterpretable	results	when	applied	to	power	spectra.	Authors	may	wish	to	ensure	that	the	sequence	of	
processing	steps	as	applied	in	their	pipeline	is	appropriate	for	their	data	type

https://github.com/kylemath/MathewsonMatlabTools/blob/master/EEG_analysis/kyle_fft.m
https://github.com/kylemath/MathewsonMatlabTools/blob/master/EEG_analysis/kyle_fft.m
https://github.com/kylemath/MathewsonMatlabTools/blob/master/EEG_analysis/kyle_fft.m
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Another	widely	used	approach	has	been	the	computa-
tion	of	relative power,	where	the	relative	contribution	
of	 a	 given	 frequency	 band	 of	 interest	 to	 the	 total	 spec-
tral	power	is	expressed	as	a	ratio,	dividing	the	power	in	
each	frequency	band,	 including	the	band	of	 interest,	by	
the	total	power	across	all	frequency	bands.	This	method	
reduces	 biased	 estimates	 that	 arise	 from	 differences	 in	
spectral	offset	and	expresses	power	as	percentage,	or	an-
other	proportion	metric,	of	the	total	power.	However,	it	is	
important	to	note	that	low-		and	high	frequencies	from	the	
same	 Fourier	 spectrum	 are	 based	 on	 the	 same	 window	
length.	Thus,	it	becomes	improper	to	compare	power	of	
distant	frequencies.	For	example,	if	3000 ms	of	data	are	
used,	1 Hz	is	estimated	based	on	three	cycles	and	100 Hz	
is	estimated	based	on	300 cycles.	Wavelet	 techniques	 in	
which	the	number	of	cycles	changes	as	a	function	of	in-
creasing	frequency	(see	Section 3.2.4)	can	be	used	in	this	
case	 to	reduce	 this	bias.	Relative	power	estimation	may	
introduce	 new	 biases	 reflective	 of	 the	 1/f	 shape	 as	 dis-
cussed	in	recent	reports	(Barry	&	Blasio, 2021;	Donoghue	
et	al., 2020)	and	is	not	recommended,	but,	if	used,	the	full	
power	spectrum	should	be	reported	(Pivik	et	al., 1993).

Researchers	 may	 also	 have	 a	 priori	 hypotheses	 re-
garding	 specific	 ratios	 between	 frequency	 band	 power	
values	 extracted	 from	 the	 same	 spectrum,	 such	 as	 the	
ratio	of	power	values	in	the	traditional	alpha	(8–	12 Hz)	
and	theta	(4–	7 Hz)	frequency	bands.	It	should	be	noted	
that	these	relatively	simple	indices,	although	tradition-
ally	 used,	 have	 received	 substantial	 recent	 criticism	
for	 being	 confounded	 with	 the	 overall	 spectral	 offset	
and	with	the	shape	of	the	spectrum	they	are	calculated	
from	 (see	 Sections  2.1	 and	 2.2).	 They	 may	 thus	 be	 re-
placed	 by	 more	 sophisticated	 analyses	 mentioned	 in	
Section  2.2,	 which	 are	 already	 available	 to	 researchers	
(see	Section 4.1	below;	Clements	et	al., 2021;	Donoghue	
et	al., 2020).	Metrics	of	relative	spectral	indices	may	also	
be	 informed	 by	 neurophysiological	 theories	 of	 brain	
function	(Haegens et al., 2022;	Lisman	&	Jensen, 2013)	
and	may	increase	the	external	validity	of	 the	measure-
ment	under	certain	circumstances.	Where	such	metrics	
are	 used,	 it	 is	 recommended	 that	 the	 spectral	 analysis	
underlying	 the	 calculation	 of	 the	 relative	 power	 mea-
sures	be	detailed	as	described	in	this	section.

3.1.3	 |	 Edge	artifacts	and	window	functions

Because	spectral	representations	reflect	all	existing	variance	
in	the	time	series,	large	variations	in	values	at	the	beginning	
and	end	of	the	empirical	input	time	series,	due	the	abrupt	
bound	of	the	time	series,	lead	to	spectral	distortions,	known	
as	“edge artifacts”.	Edge	artifacts	are	present	in	many	situ-
ations	where	temporally	constrained	intervals	are	analyzed,	

as	is	often	done	in	time-	frequency	analysis,	but	also	in	many	
studies	 measuring	 spectral	 power.	 To	 minimize	 these	 ef-
fects,	researchers	often	apply	window or taper functions,	
which	ramp	up	from	zero	to	one	and	back	to	zero.	Weighting	
the	data	series	by	such	a	function	forces	the	ends	of	the	data	
vector	to	zero.	Different	taper	window	functions	are	defined	
by	the	way	in	which	they	ramp	up	to	one	and	down	to	zero.	
Common	window	functions	include	Hann(ing),	Hamming,	
Kayser,	Bartlett,	Tukey,	Blackman,	and	Cosine-	Square	func-
tions.	Many	window	functions	do	not	allow	or	require	the	
definition	of	a	ramp-	up/ramp-	down	duration	because	they	
ramp	up	over	half	of	the	segment	and	then	down	over	the	
second	half,	reaching	a	value	of	unity	only	at	the	midpoint	of	
the	segment,	so	that	only	the	midpoint	remains	at	its	original	
value	(i.e.,	 is	multiplied	by	1).	In	these	cases,	as	well	as	 in	
cases	where	the	ramp-	up	and	ramp-	down	periods	are	set	by	
the	researcher,	 these	parameters	should	be	reported	along	
with	the	duration	and	type	of	the	window	function.	Choices	
in	 this	 regard	 may	 be	 guided	 by	 computational	 principles	
(Harris, 1978)	but	also	by	aiming	to	replicate	common	meth-
ods	(e.g.,	most	use	a	Hann	or	Hamming	window).

Averaging	the	spectral	estimates	of	multiple	overlapping	
windows	within	a	 segment	 is	often	used	 in	spectral	anal-
ysis	 to	 increase	 the	 signal-	to-	noise	 ratio	 of	 the	 spectrum.	
However,	because	of	the	Fourier	uncertainty	principle	de-
scribed	above	(see	Section 1.3.2),	estimating	spectra	for	mul-
tiple,	 shorter,	 sub-	segments	 also	 decreases	 the	 frequency	
resolution	of	the	spectrum.	Thus,	replicability	of	the	analy-
sis	is	only	achieved	by	fully	reporting	the	type,	number,	and	
overlap	of	any	window	functions	used	in	the	estimation	of	
the	spectrum.	A	further	reason	for	fully	describing	window	
functions	lies	in	the	fact	that	the	application	of	a	window	
function	 often	 changes	 the	 so-	called	 leaking effects,	 or	
the	spurious	artifactual	shifting	of	power	to	other	parts	of	
the	spectrum,	adding	to	the	power,	if	any,	at	those	frequen-
cies.	 Leaking	 is	 often	 observed	 in	 spectra	 with	 relatively	
short	 analytical	 intervals.	 Under	 certain	 conditions,	 some	
applications	benefit	from	non-	windowed	spectral	analysis,	
especially	those	in	which	the	specific	frequency	of	interest	
is	exactly	known	a	priori,	such	as	in	studies	of	brain	stimu-
lation	or	steady-	state	potentials.	In	these	cases,	researchers	
may	 wish	 to	 avoid	 window	 functions	 and	 instead	 ensure	
that	full	cycles	of	the	frequency	of	interest	are	present	in	the	
analytical	interval	(i.e.,	select	interval	that	is	an	integer	mul-
tiple	of	that	cycle	length)	and	that	trends	and	offsets	from	
baseline	are	removed	as	needed.

3.1.4	 |	 Non-	Fourier	methods

As	discussed	above	(see	Sections 1.3	and	2.1),	the	basis	
functions	 used	 for	 quantifying	 the	 spectral	 power	 at	
each	frequency	are	critical	for	the	correct	interpretation	
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of	 power	 spectra.	 In	 addition	 to	 the	 many	 flavors	 of	
Fourier	analysis,	all	of	which	use	sine	and	cosine	basis	
functions	 for	 spectral	 estimation,	 several	 other	 ap-
proaches	 are	 frequently	 used.	 These	 methods	 include	
autoregression,	in	which	oscillatory	patterns	in	the	data	
are	quantified	based	on	linear	prediction	of	future	data	
points	 by	 past	 data	 points,	 and	 a	 range	 of	 methods	 in	
which	 basis	 functions	 are	 estimated	 empirically,	 from	
the	data	 themselves.	This	section	briefly	discusses	 rec-
ommendations	 for	 methods	 based	 on	 autoregression	
and	on	empirical	basis	functions.

Parametric spectral analysis
In	contrast	to	the	non-	parametric,	Fourier-	based	approaches	
discussed	above,	parametric	spectral	analysis	starts	with	the	
assumption	that	the	measured	data	are	realizations	of	an	un-
derlying	stochastic	process	that	can	be	well-	characterized	by	
an	autoregressive (AR) model	(Ding	&	Rangarajan, 2013).	
An	AR	model	predicts	future	points	by	past	points	from	the	
same	 time	 series.	 The	 extent	 to	 which	 its	 assumptions	 are	
met	should	be	addressed	 in	 the	manuscript,	which	may	 in-
clude	 tests	 of	 statistical	 stationarity	 of	 the	 time	 series	 (see	
Section 2.4).	The	parameters	of	the	AR	model,	including	the	
model	order	and	the	model	coefficients,	are	estimated	from	
the	data	and	become	the	basis	for	obtaining	spectral	quantities	
such	as	the	power	spectrum.	The	advantages	of	the	parametric	
method	include	the	ability	to	resolve	spectral	quantities	to	ar-
bitrarily	high	resolution	in	the	frequency	domain,	the	ability	to	
obtain	smooth	spectral	estimates,	being	less	vulnerable	to	the	
shortness	of	data	segments,	and	the	ability	to	generate	Granger	
causality	 spectra.	 Disadvantages	 include	 the	 potential	 diffi-
culty	in	identifying	an	optimal	model	that	fits	the	data	well.	It	
is	recommended	that	the	model	order	be	reported	in	addition	
to	the	method	in	which	it	was	determined	(e.g.,	Bayesian	or	
Akaike	Information	Criterion;	Akaike, 1974).	In	addition,	the	
exact	implementation	of	the	autoregressive	algorithm	should	
be	given,	with	specific	references	or	in	mathematical	form.

Data- based analyses
Methods	for	spectral	analysis	based	on	empirical	features	
have	existed	for	a	long	time	and	have	recently	seen	revived	
interest	 (Loza,  2019;	 Melkonian	 et	 al.,  2003).	 For	 exam-
ple,	a	range	of	spectral	analysis	algorithms,	so	called	half-	
wave	analyses,	aim	to	 identify	peaks	or	zero-	crossings	 in	
the	 data,	 which	 are	 taken	 as	 indexing	 the	 completion	 of	
one	 half-	cycle	 of	 the	 oscillation	 of	 interest	 (Oken,  1986;	
Pooja	et	al., 2021).	Several	variants	of	so-	called	matching	
pursuit	algorithms	are	also	increasingly	used	(e.g.,	Loza	&	
Principe, 2016).	These	computationally	demanding	meth-
ods	quantify	 the	overlap	between	a	user-	defined	set	 (i.e.,	
dictionary)	of	oscillations	of	 interest	 (i.e.,	atoms)	and	the	
empirical	 data.	 If	 these	 methods	 are	 used,	 reproducing	
the	approach	is	aided	by	reporting	the	specific	algorithm	

used	 and	 providing	 mathematical	 formulation	 and	 links	
to	example	data	and	working	code.	Papers	proposing	new	
analytical	methods	and	algorithms	are	expected	to	provide	
the	code	needed	for	running	the	analyses,	enabling	review-
ers	 and	 readers	 to	 test	 and	 use	 the	 method.	 Often,	 pre-
processing	steps	are	crucial	for	reproducing	the	analyses.	
Thus,	providing	details	about	 these	 steps	 facilitates	com-
munication	as	well.	For	instance,	knowing	the	exact	type	
of	band-	pass	filter	used	for	zero-	centering	a	signal	prior	to	
half-	cycle	analysis	is	required	for	replicating	the	analysis.

3.1.5	 |	 Summary:	Reporting	spectral	analyses

In	 summary,	 it	 is	 recommended	 that	 studies	 using	 fre-
quency	 domain	 analyses	 provide	 an	 explicit	 conceptu-
alization	 of	 the	 spectral	 phenomenon	 of	 interest	 (see	
Section 2.1),	and	a	rationale	for	how	the	dependent	vari-
able	was	measured.	In	addition,	the	duration	of	the	data	
segment	of	interest	that	was	used	for	transformation	into	
the	 frequency	domain	should	be	given,	accompanied	by	
the	 frequency	resolution	of	 the	 spectrum	and	details	 re-
garding	taper	windows	or	other	ways	in	which	edge	arti-
facts	were	addressed.	The	way	in	which	data	epochs	were	
combined	within	and	across	recording	segments,	such	as	
through	overlapping	windows	and	how	the	resulting	spec-
trum	was	normalized	should	be	detailed	as	well.	Finally,	it	
is	strongly	recommended	that	figures	be	included	showing	
the	 spectral	 shape	 from	 representative	 sensor	 locations,	
instead	of	showing	only	reduced	data	such	as	bar	graphs	
or	scatter	plots	for	mean	band	power	(see	Section 4.2	for	
recommendations	about	data	figures).

3.2	 |	 Time- frequency analysis

Several	methods	are	available	to	investigators	for	analyz-
ing	the	event-	related	changes	in	oscillatory	activity	as	they	
evolve	over	a	given	period.	Because	most	time-	frequency	
analyses	 are	 extensions	 of	 the	 frequency	 domain	 ap-
proaches	discussed	above,	the	same	reporting	guidelines	
apply	 regarding	 describing	 the	 nature	 of	 the	 input	 data,	
the	 exact	 steps	 taken	 by	 the	 algorithm	 used,	 and	 any	
transformation/normalization	steps	performed.	In	the	fol-
lowing	 we	 discuss	 additional	 aspects	 of	 time-	frequency	
domain	analysis	for	widely	used	methods.

3.2.1	 |	 Reporting	inputs	of	time-	
frequency	analysis

As	a	main	determinant	of	the	frequency	information	con-
tained	in	spectral	representations,	the	temporal	duration	
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of	 the	 segments	 entering	 time-	frequency	 information	
provides	crucial	information.	In	addition,	the	length	and	
shape	 of	 any	 window	 functions	 and	 how	 they	 were	 ap-
plied	 will	 affect	 the	 interpretability	 of	 time	 segments	 at	
the	beginning	and	end	of	the	temporal	segment.	Notably,	
the	 duration	 and	 temporal	 position	 of	 a	 segment	 used	
for	 a	 pre-	stimulus	 (baseline)	 period	 can	 introduce	 data	
from	the	post-	stimulus	 interval	 through	smearing	in	the	
time	 domain.	 Baselining	 is	 therefore	 discussed	 in	 detail	
in	Section 3.2.6	 below,	along	with	guidelines	 for	 report-
ing	the	time	and	frequency	resolution	of	the	frequencies	
of	interest	(see	Section 3.2.4	below).

It	is	crucial	that	authors	communicate	the	processing	
stage	 at	 which	 the	 time-	frequency	 analysis	 is	 applied:	
Applying	 time-	frequency	 analysis	 to	 single	 trials,	 fol-
lowed	by	hypothesis	testing	or	additional	averaging,	em-
phasizes	different	aspects	of	 the	oscillatory	activity	(e.g.,	
spontaneous	 or	 induced	 in	 Galambos'	 taxonomy,	 above)	
compared	 to	 applying	 the	 time-	frequency	 analysis	 after	
trial	 averaging	 (emphasizing	 “evoked”	 oscillations	 in	
Galambos'	taxonomy).

Some	 published	 work	 in	 the	 field	 subtracts	 the	 aver-
aged	potential	(i.e.,	the	ERP)	from	each	single	trial	prior	
to	time-	frequency	analysis	on	single	trials,	aiming	to	em-
phasize	oscillations	that	are	not	time-		and	phase-	locked	to	
the	anchoring	event.	If	this	technique	is	used,	replication	
depends	on	this	step	being	prominently	mentioned	in	the	
manuscript	and	the	averaged	potential	shown	in	the	time	
and	 frequency	 domain.	 Subtracting	 cross-	trial	 average	
waveforms	 from	 single-	trial	 waveforms	 is	 not	 generally	
recommended,	 because	 it	 assumes	 additive,	 linear	 rela-
tions	between	single	trials	and	the	average,	which	may	not	
be	the	case	(e.g.,	Moratti	et	al., 2007).	As	such,	subtraction	
techniques	 may	 introduce	 spurious	 power	 indications,	
such	as	reflecting	the	variable	latency	of	time-	locked	po-
tentials	across	single	trials	(Li	et	al., 2009;	Xu	et	al., 2009).	
This	is	particularly	problematic	in	cases	where	the	evoked	
response	 is	 driven	 mainly	 by	 phase	 locking	 rather	 than	
changes	 in	 signal	 amplitude.	 These	 problems	 may	 be	
addressed	 by	 quantitatively	 assessing	 the	 amount	 of	
phase	 similarity	 across	 trials.	 Available	 techniques	 (see	
Section 3.3)	allow	researchers	to	quantify	the	amount	of	
phase	locking	across	trials,	rather	than	assuming	linearity	
in	the	interaction	of	induced	and	evoked	activity.

3.2.2	 |	 Time-	frequency	methods	based	on	the	
Fourier	transform:	Spectrogram,	moving	DFTs,	
complex	demodulation,	and	multitapers

One	 obvious	 means	 of	 measuring	 changes	 in	 oscillatory	
activity	over	 time	is	 to	apply	any	of	 the	spectral	domain	
methods	described	above	to	shifted	time	segments	of	data.	

Versions	of	this	approach	are	commonly	used	with	Fourier	
spectra	 and	 are	 referred	 to	 as	 spectrograms,	 or	 moving-	
window	DFT/FFT	analyses.	For	example,	researchers	may	
calculate	a	DFT	for	a	window	comprising	the	first	400 ms	
of	the	analytic	segment,	and	then	shift	this	window	by	one	
or	more	sample	points	until	it	reaches	the	end	of	the	ana-
lytic	segment.	When	applying	this	approach,	it	is	recom-
mended	to	report	the	step	size	and	window	length,	along	
with	 any	 within-	window	 averaging	 done	 by	 algorithms	
such	 as	 the	 Welch	 periodogram	 method.	 Paralleling	 the	
recommendations	 for	 Fourier	 spectra	 discussed	 above,	
time	domain	data	are	typically	multiplied	by	a	taper	win-
dow	function	prior	to	DFT,	and	reporting	the	type	of	the	
taper	window	function	used	along	with	its	temporal	prop-
erties	is	crucial	for	replication.	This	is	particularly	true	for	
multitaper analysis,	in	which	multiple	window	functions	
are	 applied	 prior	 to	 the	 moving-	window	 DFT	 to	 extract	
different	 information	 (e.g.,	 power	 at	 different	 frequen-
cies),	and	the	resulting	time-	varying	spectra	are	then	com-
bined	to	optimize	the	trade-	off	between	resolution	in	the	
time	and	frequency	domain.	If	multitapers	are	used,	it	is	
recommended	 that	 authors	 report	 the	 number	 of	 differ-
ent	tapering	windows	used,	their	center	frequencies,	any	
smoothing	factors	that	are	applied,	and	the	algorithm	used	
for	generating	their	shapes	(e.g.,	the	Slepian	sequence).

Complex demodulation	is	a	technique	in	which	sine	and	
cosine	functions	tuned	to	a	frequency	of	interest	are	mul-
tiplied	by	the	data	in	the	time	domain,	 followed	by	low-	
pass	 filtering	 to	 isolate	 the	envelope	of	 the	 time-	varying	
power	 at	 the	 frequency	 of	 interest.	This	 process	 may	 be	
repeated	at	different	frequencies	of	interest,	resulting	in	a	
time-	by-	frequency	representation.	It	is	recommended	that	
usage	 of	 complex	 demodulation	 is	 accompanied	 by	 re-
porting	the	frequencies	examined	and	detailed	description	
of	the	low-	pass	filter	employed,	including	filter	type,	filter	
order,	and	how	the	cutoff	frequency	was	defined	(e.g.,	as	
the	3 dB	power	or	amplitude	point).

3.2.3	 |	 Time-	frequency	methods	based	on	
time	domain	filtering

If	a	specific	frequency	of	interest	is	known	a	priori,	authors	
may	opt	to	use	time	domain	filtering,	in	combination	with	
other	 techniques,	 to	 isolate	 the	 time-	varying	 power	 at	 a	
given	frequency.	One	widely	used	group	of	methods	using	
this	approach	are	the	Filter- Hilbert	methods.	These	meth-
ods	are	based	on	the	idea	that	oscillatory	activity	at	a	given	
frequency	can	be	quantified	by	a	combination	of	band-	pass	
filtering	and	subsequent	estimation	of	the	instantaneous	
(moment-	by-	moment)	phase	using	a	mathematical	tech-
nique	that	estimates	a	phase-	shifted	version	of	the	empiri-
cal	signal,	the	so-	called	analytical	signal.	Combining	the	
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two	signals	(empirical	and	analytical)	for	each	time	point	
using	 the	modulus	 function	 (the	square	root	of	 the	sum	
of	 their	 squares)	 yields	 an	 estimate	 of	 time-	varying	 am-
plitude	at	the	frequency	of	interest.	It	can	also	be	used	to	
estimate	 time-	varying	 phase	 using	 the	 arctangent	 of	 the	
ratio	of	the	empirical	and	analytical	signal	for	each	time	
point.	If	the	Filter-	Hilbert,	or	a	similar	approach,	is	used	
it	is	recommended	that	the	implementation	(software	and	
version	number)	of	the	Hilbert	transform	used	for	finding	
the	phase-	shifted	version	of	the	empirical	signal	and	the	
details	of	the	band-	pass	filtering	process,	 including	filter	
types	used,	filter	order,	and	how	the	cutoff	frequencies	are	
defined	(i.e.,	 the	half-	power,	or	half-	amplitude	point)	be	
reported.	 Because	 the	 Filter-	Hilbert	 method	 is	 based	 on	
estimating	time-	varying	phase,	it	is	critical	for	correct	ap-
plication	that	the	filter	be	narrow-	band,	focusing	on	one	
frequency.	Broadband	phase	is	mathematically	undefined	
and	empirically	meaningless,	and	Hilbert	transforms	ap-
plied	to	broadband	data	yield	meaningless	indices.	Thus,	
it	is	strongly	recommended	that	the	description	of	the	fil-
ter	allow	readers	to	assess	the	extent	to	which	the	result-
ing	 time	 domain	 data	 were	 narrow-	band	 as	 opposed	 to	
broadband	in	nature.

3.2.4	 |	 Time-	frequency	methods	based	
on	wavelets

Wavelet analysis	 is	 a	 widely	 used	 method	 for	 estimat-
ing	 the	 time-	varying	 oscillatory	 properties	 of	 a	 neural	
time	series.	So-	called	wavelet	families	are	groups	of	finite	
time	series	that	are	tuned	to	different	frequencies	and	are	
convolved	 with	 the	 empirical	 signal.	 Wavelet	 analysis	
has	been	widely	used	because	of	its	favorable	properties:	
Differing	from	standard	spectrograms,	which	are	defined	
by	fixed	temporal	smoothing	across	frequencies	and	fixed	
frequency	smearing	across	time	points,	wavelets	have	var-
iable	 time	and	frequency	smoothing	 in	which	lower	fre-
quencies	are	more	precisely	represented	in	the	frequency	
domain,	 whereas	 higher	 frequencies	 are	 more	 precisely	
represented	in	the	time	domain.	Readers	interested	in	the	
application	 of	 wavelet	 analysis	 may	 want	 to	 peruse	 the	
seminal	review	by	Tallon-	Baudry	and	Bertrand	(1999)	or	
read	 recent	 textbooks	covering	 this	 topic	 (Cohen, 2014).	
Morlet	 wavelets	 are	 the	 most	 commonly	 used	 wavelets	
in	neuroscience.	In	the	time	domain,	they	represent	seg-
ments	of	sine	and	cosine	 functions	at	 the	 frequencies	of	
interest,	multiplied	by	a	Gaussian	envelope.	The	width	of	
the	Gaussian	envelope	determines	the	trade-	off	between	
temporal	 smoothing	 and	 frequency	 smoothing	 and	 is	 in	
turn	 under	 the	 control	 of	 the	 Morlet	 parameter	 m.	 The	
Morlet	parameter	is	typically	between	5	and	10	and	often	
equated	with	the	number	of	cycles	present	in	each	wavelet	

of	the	family.	Smoothing	(or	smearing)	is	a	consequence	
of	 the	 Fourier	 uncertainty	 principle	 and	 represents	 an	
uncertainty	 in	the	temporal	or	 frequency	position	of	 the	
signal.	 Smearing	 that	 introduces	 artifact	 or	 spurious	 ef-
fects	 from	 outside	 the	 time-	frequency	 range	 of	 interest	
undermines	validity.	We	discuss	strategies	for	managing	
smoothing	later	in	this	section.

Some	 implementations	 (e.g.,	 wavelet	 analysis	 in	
EEGLAB;	 Delorme	 &	 Makeig,  2004,	 https://sccn.ucsd.
edu/eegla	b/index.php)	increase	the	amount	of	smoothing	
across	 the	 range	 of	 frequencies	 (e.g.,	 higher	 frequencies	
experience	greater	smoothing),	and	this	should	be	noted	
in	the	manuscript.	Exact	reporting	of	the	settings	used	in	
defining	 a	 wavelet	 family	 is	 crucial	 for	 exact	 replication	
and	reproduction	of	empirical	 findings.	 It	 is	particularly	
helpful	for	readers	if	authors	report	the	maximal	temporal	
and	frequency	smoothing	associated	with	a	given	wavelet	
family.	For	example,	reporting	on	the	smoothing	in	time	at	
the	highest	and	lowest	frequency	of	interest,	and	the	fre-
quency	smoothing	at	the	lowest	and	highest	frequency	of	
interest	enables	readers	to	interpret	differences	in	latency,	
or	differences	in	frequency.

In	an	example	experiment,	researchers	decide	to	con-
duct	a	wavelet	analysis.	They	report	the	following	to	de-
scribe	the	wavelet	family	chosen:

A	 family	 of	 complex	 Morlet	 wavelets	
(Bertrand	et	al., 1994)	were	used	to	compute	
time-	by-	frequency	 representations	 of	 each	
artifact-	free	trial.	A	Morlet	constant	m	=	7	was	
chosen	 because	 it	 ensured	 acceptable	 trade-	
off	 between	 time	 and	 frequency	 smoothing	
in	 the	 frequency	 range	 between	 8	 and	 120	
Hz	 (Tallon-	Baudry	 &	 Bertrand,  1999).	 The	
Morlet	 constant	 m	 defines	 the	 ratio	 of	 each	
analysis	 frequency	 f0	and	the	standard	devi-
ation	 σf	 of	 the	 wavelet	 in	 the	 frequency	 do-
main,	which	corresponds	to	the	smoothing	in	
the	frequency	domain.

The	corresponding	smearing	in	the	time	do-
main	is	given	as

Thus,	 given	 a	 segment	 length	 of	 1600  ms	
(600  ms	 baseline	 and	 1000  ms	 post-	onset),	
wavelets	were	spaced	at	the	native	frequency	
resolution	of	1/1.6 = 0.625 Hz.	Wavelets	with	
a	 center	 frequency	 between	 8.75  Hz	 and	
12.5  Hz	 were	 used	 to	 quantify	 alpha-	band	

(1)�f = f 0∕m.

(2)�t = 1∕ (2∗pi∗�f)

https://sccn.ucsd.edu/eeglab/index.php
https://sccn.ucsd.edu/eeglab/index.php
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changes.	 Because	 the	 width	 of	 wavelets	 in	
the	frequency	and	time	domains	changes	as	a	
function	of	m	(7	here),	frequency	smoothing	
(σf)	was	1.25 Hz	(8.75 Hz/7,	Equation 1)	for	
the	wavelet	centered	at	8.75 Hz	and	1.79 Hz	
(12.5 Hz/7,	Equation 1)	 for	 the	wavelet	cen-
tered	 at	 12.5  Hz.	 Applying	 Equation  (2),	
temporal	 smoothing	 (σt)	 at	 these	 frequen-
cies	 was	 1/(2*pi*1.25)  =  0.127  s	 and	 1/
(2*pi*1.79) = 0.89 s,	respectively.	In	the	high-	
frequency	band	of	interest,	σt	at	30 Hz	was	….

Thus,	 in	 the	 case	 of	 Morlet	 wavelets,	 the	 standard	 de-
viation	 (smoothing)	 in	 both	 the	 time	 (σt)	 and	 frequency	
(σf)	domains	can	be	obtained	using	Equations (1)	and	(2).	
Smoothing	changes	with	the	frequency	in	both	the	time	and	
frequency	domain,	because	of	Equation (1).

For	 methods	 other	 than	 wavelet	 analysis,	 different	
ways	exist	to	identify	the	temporal	and	frequency	smooth-
ing	at	frequencies	of	interest.	If	unsure	how	to	find	these	
metrics	for	their	specific	method,	researchers	may	empir-
ically	measure	the	smoothing	by	applying	their	algorithm	
to	a	pulse	signal.	A	pulse	signal	is	a	vector	of	zeros	having	
the	duration	of	the	empirical	data	to	be	analyzed,	with	a	
singular	unit	value	(i.e.,	the	number	one)	at	its	center.	The	
full	width	at	half	maximum	(FWHM)	of	the	pulse	in	the	
filtered	data	is	a	metric	corresponding	to	σt	and	σf	and	is	
often	used	to	measure	uncertainty	or	spread	in	time	series	
analyses.	An	extensive	tutorial	and	discussion	of	FWHM	
in	time-	frequency	analysis	with	Morlet	wavelets	is	given	
in	Cohen (2019).	Importantly,	knowing	and	reporting	the	
temporal	and	frequency	smoothing	is	also	crucial	for	any	
baselining	procedures,	discussed	below.

3.2.5	 |	 Time-	frequency	methods	based	on	
Cohen’s	class	reduced	interference	distributions

The	reduced	interference	distribution	(RID)	from	Cohen’s	
class	 of	 time-	frequency	 transforms	 offers	 a	 kernel-	based	
approach	 to	 computing	 time-	frequency	 transforms.	 A	
kernel	 is	 an	 algorithm	 which	 maps	 an	 input	 to	 an	 out-
put.	For	a	description	of	the	RID,	see	(Cohen, 1995),	and	
for	 additional	 discussion	 of	 differences	 with	 wavelets,	
see	related	EEG/ERP	applications	(Aviyente	et	al., 2011;	
Bernat	 et	 al.,  2005).	 Perhaps	 the	 most	 relevant	 features	
of	RIDs	are	represented	in	the	nonlinear	transforms	they	
produce.	 RID	 time-	frequency	 transforms	 have	 uniform	
time-	frequency	 resolution,	 with	 accurate	 instantaneous	
power,	and	include	local	and	global	features.	This	means	
that	they	minimize	the	smoothing	in	time	at	low	frequen-
cies	and	the	smoothing	in	frequency	at	high	frequencies	
that	is	observed	with	wavelets	(see	Section 3.2.4).	This	is	

most	 relevant	 for	 event-	related	 applications,	 where	 the	
high	time	resolution	of	the	EEG/MEG	is	used	to	infer	the	
timescale	of	brain	signals.	Another	key	property	of	RIDs	
is	the	preservation	of	power	in	the	time-	frequency	repre-
sentation	of	the	signal	(generally	referred	to	as	satisfying	
the	 marginals—	sums	 across	 the	 time-	frequency	 rows	 or	
columns).	 There	 is	 not	 currently	 evidence	 demonstrat-
ing	that	satisfying	the	marginals	is	relevant	for	EEG/ERP	
work,	although	when	comparing	time	and	time-	frequency	
domain	results	it	is	helpful	to	have	the	same	accurate	pres-
ervation	 of	 the	 signal	 power	 across	 domains.	 As	 stated	
above,	RIDs	are	nonlinear,	relative	to	wavelets,	and	thus	
can	be	more	difficult	to	interpret	(e.g.,	signal	reconstruc-
tion	is	more	complicated).	Finally,	the	RID	characterizes	
global	 features	 (e.g.,	 harmonics),	 relative	 to	 wavelets,	
which	index	only	local	activity.	Several	other	approaches	
exist,	 which	 leverage	 kernels	 describing	 time-	frequency	
distributions.

3.2.6	 |	 Baseline	adjustment

The	 output	 of	 most	 time-	frequency	 analyses	 consists	 of	
high-	dimensional	 matrices	 of	 complex	 numbers,	 often	
containing	 values	 for	 sensors,	 time	 points,	 and	 frequen-
cies.	 In	 addition,	 different	 indices	 may	 be	 computed.	
Time-	varying	 spectral	 power	 is	 the	 most	 frequently	 used	
index,	representing	the	magnitude	of	the	oscillatory	activ-
ity	 at	 a	 given	 sensor,	 time,	 and	 frequency.	 Power	 at	 one	
sensor	 or	 in	 one	 region	 of	 interest	 may	 be	 illustrated	 as	
a	 two-	dimensional	 map,	 which	 shows	 the	 time-	varying	
power	over	time	relative	to	the	event	of	interest	at	differ-
ent	frequencies.	This	allows	us	to	compare	spectral	power	
observed	before	and	after	an	event	of	 interest,	as	well	as	
at	different	temporal	distances	from	this	event.	However,	
as	discussed	 in	Section 2.1,	 the	 interpretation	of	changes	
from	baseline	rests	on	assumptions	regarding	the	underly-
ing	processes	contributing	to	the	spectrum.	Furthermore,	
because	power	is	a	measure	of	variance,	it	is	often	distrib-
uted	in	a	skewed	manner	across	observations	(e.g.,	trials,	
participants),	 which	 may	 complicate	 statistical	 analyses.	
To	address	this	challenge,	investigators	may	use	transfor-
mations,	such	a	log	transform,	with	the	purpose	of	making	
the	observed	distributions	more	Gaussian.	However,	trans-
formations	such	as	 the	 log	 transform	imply	a	multiplica-
tive	model	of	the	time-	by-	frequency	matrix,	as	discussed	in	
Section 2.1.	Paralleling	the	recommendations	for	spectral	
analysis,	the	model	and	assumptions	underlying	the	com-
position	of	the	time-	frequency	plane	and	their	implications	
for	data	reduction	should	be	described	in	the	manuscript.

Researchers	 often	 perform	 a	 baselining procedure,	 in	
which	 the	 time-	varying	power	 is	expressed	as	change	 in	
power	 relative	 to	 a	 suitable	 pre-	stimulus	 time	 segment.	
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Selection	 of	 the	 baseline	 segment	 should	 take	 into	 ac-
count	the	Fourier	uncertainty	principle	mentioned	above:	
Although	 a	 spectral	 estimate	 may	 be	 available	 for	 each	
sample	point,	the	data	in	a	time-	frequency	representation	
contain	 information	 that	 is	 smeared/smoothed,	 both	 in	
the	temporal	and	frequency	dimensions.	Thus,	research-
ers	may	wish	to	consider	the	following	selection	require-
ments	 for	 a	 suitable	 baseline	 segment:	 (1)	 The	 baseline	
segment	should	not	be	contaminated	by	edge	artifacts	and	
may	not	include	time	segments	that	are	subjected	to	taper	
windows;	(2)	It	should	be	of	sufficient	length	to	render	a	
robust	estimate	of	 the	baseline	 level;	 (3)	 It	 should	be	of	
sufficient	distance	from	stimulus	onset	to	exclude	activity	
evoked	 by	 the	 stimulus.	 Such	 a	 segment	 will	 be	 tempo-
rally	removed	from	the	ramp	of	the	taper	window,	or	from	
the	onset	of	 the	trial	 if	no	window	was	used,	by	at	 least	
one	standard	deviation	(σt),	at	the	lowest	frequency	con-
sidered	 in	 the	analysis.	 In	 the	same	vein,	 the	end	of	 the	
baseline	segment	should	be	removed	from	event	onset	by	
at	 least	one	standard	deviation.	Finally,	 it	 is	 common	to	
use	a	baseline	duration	that	accommodates	several	cycles	
of	the	lowest	frequency	of	interest,	ensuring	that	the	base-
line	segment	contains	a	robust	estimate	of	the	oscillatory	
process	under	consideration.	Following	the	above	sugges-
tions	 prevent	 the	 baseline	 from	 being	 contaminated	 by	
oscillatory	activity	following	the	stimulus,	or	by	edge	and	
window	artifacts	from	the	beginning	of	the	epoch.	When	
contrasting	 conditions,	 it	 is	 important	 to	 assure	 that	 no	
power	 differences	 exist	 during	 the	 baseline	 interval	 that	
would	confound	post-	stimulus	differences	when	baseline	
normalization	is	performed.	In	general,	when	performing	
statistical	contrasts	between	conditions,	baseline	normal-
ization	may	often	be	unnecessary,	and	authors	may	wish	
to	 cross-	validate	 analyses	 with	 and	 without	 baseline	 ad-
justment,	 as	 well	 as	 examining	 any	 baseline	 differences	
between	conditions.

3.2.7	 |	 Summary:	Reporting	on	time-	
frequency	analysis

All	 time-	frequency	 analyses	 are	 strongly	 affected	 by	 the	
nature	of	the	input	data:	It	is	thus	recommended	that	au-
thors	 detail	 the	 duration	 of	 the	 time	 range	 entering	 the	
analysis,	including	the	duration	of	time	ranges	before	and	
after	any	anchoring	events.	Paralleling	 requirements	 for	
ERP	studies,	the	number	of	segments	entering	the	analy-
ses	 in	each	experimental	condition	and/or	group	should	
be	 reported,	 as	 it	 affects	 the	 signal-	to-	noise	 ratio	 of	 the	
resulting	 time-	frequency	 representations.	 Furthermore,	
describing	 the	 implementation	of	 the	algorithm	in	suffi-
cient	detail	to	allow	reproduction,	even	in	other	software,	
is	recommended.	The	temporal	and	frequency	smoothing	

inherent	in	time-	frequency	analyses	should	be	reported	in	
detail	sufficient	for	readers	to	interpret	the	extent	to	which	
different	 events	 and	 phenomena	 in	 the	 time-	frequency	
plane	 are	 to	 be	 considered	 overlapping	 or	 independent.	
Smearing	 information	at	 the	 frequencies	of	 interest	also	
allows	 readers	 to	 understand	 the	 authors'	 choice	 of	 any	
baseline	segments	used	in	the	published	work.	Finally,	if	a	
nonlinear	transformation	or	baseline	removal	was	applied	
prior	to	statistical	analysis,	including	a	rationale	for	how	
these	choices	were	made	is	recommended.

3.3	 |	 Phase- based analyses

Time	 domain	 averaging	 is	 a	 staple	 of	 electrophysiology,	
in	which	segments	from	repeated	trials	are	time-	locked	to	
the	 event	 of	 interest	 and	 averaged	 together	 to	 minimize	
what	is	considered	noise	(e.g.,	processes	that	do	not	have	
similar	time	courses	in	each	trial).	This	procedure	enables	
calculating	and	visualizing	waveforms	that	represent	the	
mean	response,	or	“evoked”	response	in	Galambos'	taxon-
omy.	Going	beyond	this	approach	that	is	most	prominently	
used	in	event-	related	potential	(ERP)	research,	research-
ers	may	use	frequency	domain	or	time-	frequency	domain	
approaches	 to	 quantify	 the	 amount	 of	 temporal	 similar-
ity	 of	 a	 given	 oscillation	 across	 repeated	 trials.	 Methods	
toward	 this	 end	 are	 often	 referred	 to	 as	 phase-	locking,	
phase-	similarity,	 or	 phase	 clustering	 analyses	 (e.g.,	
Lachaux	et	al., 1999).	For	example,	researchers	may	wish	
to	examine	the	amount	of	phase-	locking	of	μ-	oscillations	
as	participants	prepare	for	self-	paced	manual	responses,	or	
as	participants	listen	to	syllables	varying	in	duration	or	in-
tensity.	For	reviews	of	phase-	similarity	measures,	readers	
are	directed	to	extant	tutorial	and	review	papers	(Aviyente	
et	al., 2011;	Lachaux	et	al., 1999;	Roach	&	Mathalon, 2008;	
Tallon-	Baudry	&	Bertrand, 1999).

3.3.1	 |	 Reporting	on	inputs	of	phase-	
based	analyses

Because	 phase	 is	 typically	 extracted	 by	 one	 of	 the	 al-
gorithms	 for	 extracting	 power	 as	 described	 above,	 the	
description	of	the	inputs	will	likely	contain	the	informa-
tion	 discussed	 in	 Sections  3.1	 and	 3.2.	 Several	 authors	
have	found	that	phase	analyses	are	particularly	sensitive	
to	filtering,	where	filtering	at	high	filter	orders	and/or	in	
narrow	frequency	bands	may	result	 in	spuriously	high	
phase	 similarity	 across	 trials,	 participants,	 or	 sensors	
(Kolev	&	Yordanova, 1997;	Kramer	et	al., 2008).	Thus,	
detailed	 description	 of	 filters	 is	 particularly	 relevant	
when	 researchers	 are	 interested	 in	 phase-	based	 analy-
ses.	 In	 a	 similar	 vein,	 there	 is	 an	 ongoing	 discussion	
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regarding	 the	 benefits	 versus	 disadvantages	 of	 mul-
tivariate	 processing	 steps,	 such	 as	 independent	 com-
ponent	 analysis,	 often	 used	 for	 artifact	 removal	 (e.g.,	
Castellanos	&	Makarov, 2006).	To	the	extent	that	these	
methods	remove	a	linear	combination	of	channel	read-
ings	 from	the	data,	 they	may	alter	 the	observed	phase.	
However,	analytical	and	empirical	studies	suggest	 that	
these	changes	do	not	affect	the	phase	similarity	or	phase	
locking	 across	 trials	 or	 channels.	 To	 heighten	 the	 ro-
bustness	of	reported	results,	authors	may	want	to	com-
pare	results	with	and	without	advanced	artifact	removal	
techniques.	 There	 appears	 to	 be	 a	 need	 for	 systematic	
analyses	of	processing	pipelines	on	observed	effects,	and	
such	work	is	increasingly	seen	in	the	literature.

The	 mathematical	 nature	 of	 phase	 as	 a	 metric	 of	 lo-
cation	in	a	cycle	raises	another	pertinent	issue	regarding	
the	inputs	of	phase-	based	analyses,	including	analyses	in	
the	spatial	domain	as	discussed	below:	Phase is not defined 
for broadband signals.	Although	it	 is	possible	 to	 instruct	
an	analytical	tool,	such	as	a	MATLAB	toolbox	or	Python	
library,	to	determine	the	phase	for	a	broadband	signal,	the	
resulting	values	are	meaningless.	Phase	is	a	circular	index	
(e.g.,	degrees)	of	location	within	the	cycle	(e.g.,	at	the	peak	
going	down;	above	zero-	crossing	going	up,	etc.).	 If	mul-
tiple	frequencies	exist	concurrently,	 then	multiple	cycles	
with	conflicting	locations	can	be	found	at	any	given	time	
point,	rendering	the	notion	of	phase	meaningless.	Thus,	
when	reporting	on	the	input	of	phase-	based	analyses,	au-
thors	may	want	to	specify	the	frequency	specificity	of	the	
algorithm	itself	(e.g.,	convolution	with	a	family	of	wave-
lets)	or	the	filters	used	(e.g.,	the	Filter-	Hilbert	method).

Phase-	based	analyses	are	highly	sensitive	to	the	num-
ber	of	trials	entering	the	analysis.	For	example,	the	phase-	
locking	 value,	 often	 also	 referred	 to	 as	 phase-	clustering	
or	 phase-	synchrony	 index,	 computed	 as	 a	 function	 of	 1	
minus	 variance	 of	 phase	 values	 over	 trials,	 tends	 to	 de-
crease	 with	 increasing	 numbers	 of	 trials.	 This	 makes	 it	
difficult	to	compare	experimental	conditions	or	groups	or	
participants	in	cases	where	the	number	of	trials	differ.	As	
discussed	below	(Section 3.4),	several	algorithms	are	avail-
able	for	addressing	this	issue	(e.g.,	Stam	et	al., 2007),	but	
in	general	it	is	considered	good	practice	to	compare	phase-	
based	indices	between	conditions	after	ensuring	that	the	
trial	count	 for	each	condition	 is	matched,	potentially	by	
randomly	dropping	trials	in	a	condition	with	a	greater	trial	
count,	likely	at	the	level	of	participants.

3.3.2	 |	 Summary:	Reporting	on	phase-	
based	analyses

The	 guidelines	 discussed	 in	 Sections  3.1	 and	 3.2	 largely	
apply	to	phase-	based	analyses.	Reporting	on	the	number	

of	trials	entering	the	analysis	per	condition	and	subject	is	
particularly	relevant	for	phase-	based	analyses.	Authors	are	
also	encouraged	to	ensure	that	phase	is	not	estimated	from	
broadband	signals	(e.g.,	the	phase	of	a	4–	8 Hz	band-	passed	
signal	 is	undefined).	To	 the	extent	 that	phase-	clustering	
indices	tend	to	be	bounded	between	0	and	1,	authors	may	
wish	to	 take	this	non-	normality	 into	account	when	con-
ducting	 statistical	 analyses	 (Maris	 &	 Oostenveld,  2007;	
Tallon	et	al., 1995),	because	many	implementations	of	the	
general	linear	model	assume	normality.

3.4	 |	 Analyses of spatial dependence 
(“connectivity analysis”)

Although	 temporal	 sensitivity	 and	 specificity	 are	 often	
seen	as	the	primary	strength	of	neural	time	series	analy-
sis,	 these	analyses	may	also	provide	unique	ways	 to	 test	
hypotheses	 regarding	 interdependencies	 across	 space,	
specifically	between	different	sensor	or	source	locations.	
From	 the	 perspective	 of	 understanding	 brain	 function,	
these	 dependencies	 may	 provide	 a	 means	 to	 quantify	
large-	scale	 interactions	or	connectivity	between	brain	re-
gions.	Since	most	researchers	reading	these	guidelines	are	
likely	working	with	noninvasive	methods,	we	will	first	ad-
dress	the	volume	conduction	issue.	Then,	we	will	provide	
a	 brief	 overview	 of	 commonly	 used	 methods	 and	 close	
with	some	comments	on	reporting.

3.4.1	 |	 The	volume	conduction	problem

Volume	conduction,	or	“field	spread”,	describes	the	phe-
nomenon	that	neural	activity	in	one	area	is	captured	not	
only	by	an	electrode	in	the	vicinity,	but	also	by	other	elec-
trodes	at	more	distant	locations.	This	leads	to	two	relevant	
problems	when	it	comes	to	studying	neural	interactions,	
especially	when	using	EEG	or	MEG:	1)	Signals	from	adja-
cent	sensors	will	be	highly	correlated,	without	providing	
evidence	 for	 actual	 interactions	 between	 separate	 phe-
nomena;	2)	The	signal	at	one	sensor	is	a	mixture	of	several	
underlying	sources	that	are	concurrently	active.	For	these	
two	 main	 reasons,	 interpreting	 cross-	area	 interactions	
from	 data	 recorded	 at	 the	 scalp	 is	 highly	 problematic.	
Therefore,	it	is	advised	to	apply	some	form	of	spatial	filter-
ing	to	“unmix”	the	signal	and,	when	using	approaches	for	
source	 reconstruction,	 to	 ideally	obtain	anatomically	 in-
terpretable	signals.1	If	a	priori	regions	of	interest	are	avail-
able,	researchers	may	decide	to	perform	source	modeling	

	1Note	that	intracranial	recordings	such	as	ECoG	do	not	completely	
eliminate	issues	of	volume	conduction,	especially	when	using	a	
unipolar	reference;	e.g.,	Mercier	et	al.,	(2017).
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by	using	coordinates	determined	from	a	separate	localizer	
run.	Although	this	step	will	mitigate	the	volume	conduc-
tion	issue	somewhat,	depending	on	the	inverse	modeling	
approach	used	(Schoffelen	&	Gross, 2009),	the	issue	will	
not	 be	 entirely	 eliminated,	 which	 has	 to	 be	 considered	
when	interpreting	and	reporting	the	results.

3.4.2	 |	 Common	oscillation-	related	
connectivity	measures

Brain	oscillations	have	been	proposed	to	play	an	important	
role	in	enabling	inter-	area	communication	(Singer, 1999).	
For	example,	optimal	alignment	of	oscillatory	phases,	re-
flecting	different	excitability	states,	has	been	proposed	to	
enable	or	block	communication	between	respective	neu-
ral	ensembles	(Fries, 2015).	In	this	regard,	spectral	coher-
ence	(Nunez	et	al., 1997)	and	phase	synchrony	(Lachaux	
et	al., 1999)	are	 the	most	common	measures	 for	quanti-
fying	 the	 consistency	 of	 phase	 differences	 between	 two	
recording	sites.	Another	popular	approach	is	to	quantify	
correlations	 between	 the	 amplitude	 envelopes	 of	 band-	
pass	filtered	signals	(e.g.,	Hipp	et	al., 2011),	even	though	
it	 is	 less	clear	how	these	slower	processes	support	 inter-
areal	 communication	 compared	 to	 the	 aforementioned	
phase-	based	 approaches.	 Amplitude	 correlation	 as	 well	
as	 coherence/phase-	synchrony	 measures	 are	 heavily	 in-
fluenced	 by	 volume	 conduction.	 Variations	 of	 methods	
mitigating	 this	 issue	 have	 been	 proposed	 (e.g.,	 orthogo-
nalization	 of	 envelope	 time-	series,	 imaginary	 coher-
ence,	weighted	phase-	lag	 index;	Nolte	et	 al.,  2004;	Stam	
et	al., 2007).	Together,	these	measures	capture	aspects	of	
linear	dependencies	between	two	signals,	without	provid-
ing	information	about	their	directionality.	This	may	be	in-
sufficient	in	some	cases,	and	methods	that	operationalize	
causality	in	terms	of	temporal	causality	may	be	desirable.	
Granger	 causality	 estimated	 from	 Fourier-	transformed	
data	(Dhamala	et	al., 2008)	is	gaining	popularity	because	
it	does	not	require	the	user	to	determine	the	model	order,	
as	 is	 required	 in	 autoregressive	 modeling	 (see	 Section	
“Data-	based	analyses”).

Whereas	 linear	 relations	 are	 in	 general	 more	 easily	
understood	 and	 modeled,	 some	 interdependencies	 may	
be	non-	linear.	Undirected	(e.g.,	Mutual	Information)	and	
directed	(e.g.,	Transfer	Entropy)	measures	have	been	ap-
plied	 recently	 to	 capture	 interdependencies,	 within	 and	
across	 frequency	 bands,	 in	 a	 generalized	 manner	 (e.g.,	
Giordano	 et	 al.,  2017).	 Finally,	 all	 aforementioned	 mea-
sures	are	data-	driven	(i.e.,	they	do	not	involve	an	explicit	
model	of	how	the	data	are	generated).	When	a	generative	
neuronal	 model	 exists,	 along	 with	 a	 clear	 and	 circum-
scribed	region	of	interest,	then	using	a	Dynamical	Causal	
Model	 framework	 also	 offers	 an	 interesting	 option	 to	

quantify	interactions,	along	with	other	parameters	of	the	
neuronal	model	(Friston	et	al., 2012).

3.4.3	 |	 Reporting	on	outputs	of	interareal	
dependence	analysis

This	section	aims	to	illustrate	that	there	is	no	single	best	
measure	 to	 quantify	 “connectivity”	 based	 on	 EEG/MEG	
signals.	In	practice,	the	decision	about	which	measures	to	
report	will	most	commonly	depend	on	 the	 time	scale	of	
the	putative	interaction	(e.g.,	slow:	envelope	correlations;	
fast:	 phase-	based	 measures),	 and	 whether	 the	 direction-
ality	of	the	interaction	is	a	relevant	piece	of	 information	
with	regards	to	the	research	question.	A	crucial	need	is	to	
explicitly	describe	how	the	volume	conduction	issue	is	ad-
dressed.	Contrasting	conditions	does	mitigate	 this	 issue.	
However,	 especially	 for	 measures	 such	 as	 coherence	 or	
phase	 synchrony,	 which	 are	 appealing	 due	 to	 their	 pre-
sumed	 mechanistic	 relevance,	 problems	 remain	 when	
condition	differences	in	terms	of	power	are	present	in	an	
overlapping	frequency	range.	Stratifying	trials	within	con-
dition	with	respect	to	power	or	resorting	to	measures	less	
affected	by	volume	conduction	would	provide	alternative	
ways	of	addressing	this	issue.	Independent	of	the	choice	
of	connectivity	metric,	applying	approaches	to	unmix	the	
signals	 is	 also	 helpful.	 Researchers	 should	 precisely	 de-
scribe	 the	 source-	modeling	 approach	 used	 (e.g.,	 sparse	
or	 distributed	 set	 of	 sources).	 Next,	 to	 mitigate	 volume	
conduction	issues,	these	approaches	also	make	the	results	
more	 interpretable	 by	 referring	 to	 an	 anatomical	 region	
rather	than	to	an	arbitrary	electrode	or	sensor.	When	clear	
regions	of	interest	exist,	results	may	be	depicted	using	sur-
face	 or	 volume	 plots	 in	 which	 connectivity	 strength	 (or	
differences	between	conditions)	are	shown	with	reference	
to	 the	seed	region.	These	3D	depictions	are	not	possible	
unless	 applying	 graph	 theoretical	 measures	 (Bullmore	
&	 Sporns,  2009),	 when	 full	 (i.e.,	 all-	to-	all)	 connectivity	
effects	 need	 to	 be	 visualized.	 For	 this	 purpose,	 circular	
connectograms	 or	 Sankey	 plots	 (Schmidt,  2008)	 may	 be	
an	option.	Although	all-	to-	all	 connectivity	analyses	may	
sound	appealing,	they	dramatically	increase	the	multiple-	
comparison	issue,	even	more	so	when	time	and	frequency	
are	 included	 as	 additional	 dimensions.	 Therefore,	 hav-
ing	at	least	one	clear	region	of	interest	facilitates	not	only	
computation,	but	also	the	reporting	of	effects.

3.4.4	 |	 Summary:	Reporting	on	spatial	
dependence	analyses

In	addition	to	reporting	on	the	methods	for	generating	the	
spectral	representation	used	for	assessing	the	dependence,	
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the	metric,	and	algorithm	used	(e.g.,	inter-	site	phase	lock-
ing,	 Granger	 causality,	 DCM)	 should	 be	 reported	 with	
references	 that	 facilitate	 replication.	 The	 same	 applies	
when	using	Graph	theory	to	describe	connectivity	matri-
ces.	Citing	software	version	and	manufacturer	of	software	
does	not	suffice	in	this	regard.	Likewise,	 the	method	for	
addressing	volume	conduction	or	spatial	smearing	should	
be	detailed	and	the	algorithm	provided.	Finally,	it	should	
be	made	clear	to	what	extent	spatial	nodes	examined	were	
hypothesized	 a	 priori	 or	 discovered	 ad	 hoc,	 because	 the	
multiple	comparison	problem	tends	to	be	particularly	se-
vere	 in	studies	with	dense	sensor	arrays	and	full	site-	to-	
site	connectivity.

3.5	 |	 Testing hypotheses regarding 
interactions between oscillations at 
different frequencies and interactions 
between oscillations and behavior 
(coupling analyses)

In	recent	decades,	driven	by	computational	and	animal-	
model	work,	 interest	has	grown	 in	 interactions	between	
brain	 oscillations	 at	 different	 frequencies.	 Researchers	
have	developed	methods	to	characterize	different	types	of	
cross-	frequency	interactions,	which	are	often	categorized	
by	what	is	being	measured	for	each	of	the	oscillations	of	in-
terest.	Furthermore,	similar	techniques	are	widely	used	to	
assess	coupling	between	neural	and	autonomic	(Mueller	
et	al., 2010)	or	neural	and	behavioral	data	(Vanrullen	&	
Dubois, 2011).	 In	 this	section,	we	provide	recommenda-
tions	for	reporting	on	the	usage	of	these	approaches.

3.5.1	 |	 Principles	of	cross-	frequency	
coupling	analyses

Many	 studies	 interested	 in	 cross-	frequency	 interactions	
use	an	approach	akin	to	cross-	tabulation	in	statistical	de-
pendence	analysis.	For	example,	phase-	to-	amplitude	cou-
pling	methods	quantify	the	extent	to	which	the	phase	at	
one	 frequency	 is	 systematically	 related	 to	 the	amplitude	
at	 another	 frequency	 (Canolty	 &	 Knight,  2010;	 Kramer	
et	al., 2008;	Voytek	et	al., 2013).	In	a	similar	vein,	phase-	
to-	phase	 and	 amplitude-	to-	amplitude	 coupling	 analyses	
aim	to	quantify	statistical	dependencies	between	phases	or	
amplitudes	measured	at	different	frequencies.	Specifically,	
with	respect	to	phase-	to-	amplitude	measurement,	various	
techniques	follow	the	same	logic:	Take	a	time	series	and	
transform	it	 into	a	spectrogram,	divide	 the	phase	values	
of	a	lower	carrier	frequency	into	bins,	for	each	bin	find	all	
the	time	points	with	that	phase,	and	measure	the	power	

of	higher	frequencies	during	these	time	points.	Next,	ob-
serve	 the	 distribution	 of	 power	 in	 high	 frequencies	 as	 a	
function	 of	 low-	frequency	 phase	 and	 compare	 this	 to	 a	
null	 distribution	 with	 parametric	 (χ2)	 or	 nonparametric	
tests.	 Recent	 reviews	 of	 various	 techniques	 recommend	
the	Modulation	Index	(MI)	as	a	robust	estimate	for	char-
acterizing	 the	 coupling	 between	 phase	 and	 power	 (Tort	
et	al., 2010),	but	many	alternative	algorithms	have	been	
used	(Hülsemann	et	al., 2019).	These	algorithms	are	often	
applied	 across	 a	 range	 of	 higher	 frequencies	 in	 order	 to	
identify	 the	 frequencies	 with	 the	 most	 phase	 locking	 to	
the	low-	frequency	carrier	frequencies.	Analyses	that	focus	
on	 coupling	 between	 power	 at	 different	 frequencies	 or	
phase	 angles	 at	 different	 frequencies	 tend	 to	 follow	 the	
same	principle	of	identifying	statistical	dependence,	often	
using	cross-	histograms.

3.5.2	 |	 Principles	of	brain-	behavior	
coupling	analyses

Rooted	in	the	notion	that	brain	oscillations	represent	cy-
cles	 of	 excitability	 of	 neural	 populations,	 there	 is	 a	 long	
history	 of	 research	 into	 the	 relationship	 between	 the	
phase	of	ongoing	oscillatory	activity	and	behavior	or	other	
physiological	phenomena	(Klimesch, 2018).	The	relation-
ship	between	phase	and	behavior	can	be	tested	with	a	va-
riety	of	methods,	many	of	which	were	recently	compared	
in	a	systematic	review	(Wolpert	&	Tallon-	Baudry,	2021).	
These	 methods	 generally	 follow	 the	 same	 logic	 as	 those	
described	 for	 cross-	frequency	 coupling:	 The	 oscillatory	
phase	or	amplitude	is	divided	into	bins,	and	the	distribu-
tion	of	the	behavioral	variable	across	these	neural	bins	is	
analyzed.

3.5.3	 |	 Reporting	on	the	implementation	of	
coupling	analyses

When	 reporting	 on	 cross-	frequency	 coupling	 analyses,	
we	recommend	a	clear	indication	of	the	algorithm	used,	
including	 all	 necessary	 preprocessing	 steps	 to	 sepa-
rate	out	the	frequency	bands	of	interest.	As	discussed	in	
Section 3.3,	estimation	of	phase	requires	narrow-	band	sig-
nals,	highlighting	the	benefit	of	detailing	the	underlying	
frequency	or	time-	frequency	analysis.	If	binning	is	used	as	
described	above,	authors	should	indicate	how	many	bins	
were	used.	It	is	also	recommended	to	report	the	number	of	
trials	going	into	each	condition,	and	to	ensure	equal	num-
ber	of	trials.	If	the	number	of	trials	differs	between	condi-
tions,	 then	 the	 same	 goal	 can	 be	 accomplished	 through	
resampling	of	trials.
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3.5.4	 |	 Reporting	the	output	of	
coupling	analyses

Many	different	statistical	indices	of	coupling	are	used	in	
the	 field.	 It	 is	 recommended	 that	 the	 variables	 be	 nor-
mally	 distributed	 if	 using	 parametric	 statistical	 tests	 or	
apply	 normalizing	 transformations.	 Care	 should	 also	 be	
taken	 to	ensure	 that	other	assumptions	of	 the	 statistical	
model	are	met.	Nonparametric	tests	are	also	widely	used,	
including	approaches	using	permutation,	randomization,	
and	re-	sampling	techniques	(Groppe	et	al., 2011;	Maris	&	
Oostenveld, 2007).	Authors	should	report	the	specific	al-
gorithm	used,	provide	a	link	to	the	code	used,	and	indicate	
what	was	randomized/permuted	if	applicable.	Finally,	we	
recommend	 that	 authors	 clearly	 indicate	 whether	 cou-
pling	 analyses	 were	 done	 within	 or	 across	 subjects	 and	
show	the	whole	range	of	the	distribution	or	histogram	for	
each	of	the	variables	entering	the	analysis.

4 	 | 	 CONSIDERATIONS FOR 
STATISTICAL ANALYSIS AND DATA 
FIGURES

The	 previous	 sections	 highlighted	 the	 abundance	 of	 de-
pendent	 variables	 and	 the	 richness	 of	 information	 that	
may	 be	 obtained	 in	 studies	 of	 oscillatory	 activity.	 The	
number	 of	 potential	 variables	 (e.g.,	 metrics	 of	 power,	
phase,	phase-	locking,	 inter-	area,	and	 inter-	frequency	 in-
teractions)	as	well	as	their	high-	dimensional	nature	(i.e.,	
time,	 location,	 frequency)	pose-	specific	demands	on	sta-
tistical	procedures.	In	the	following	sections,	we	focus	on	
statistical	approaches	that	are	particularly	relevant	when	
dealing	with	high-	dimensional	data	and	methods	for	ad-
dressing	other	challenges	specific	 to	 the	measures	of	os-
cillatory	activity	discussed	above.	Readers	with	a	broader	
interest	in	the	foundations	of	measurement	and	statistical	
analysis	of	neural	data	are	directed	to	available	guidelines	
and	review	papers	(Keil	et	al., 2014;	Luck, 2005;	Luck	&	
Gaspelin, 2017;	Maris, 2012).

4.1	 |	 Statistical analysis with spectral 
outcome variables

Almost	always,	 the	main	 interest	 in	electrophysiological	
studies	 pertains	 to	 the	 difference	 between	 two	 or	 more	
experimental	conditions	and/or	groups.	Therefore,	a	nec-
essary,	but	not	sufficient	requirement	for	an	informative	
empirical	result	is	a	reliable	difference	between	conditions.	
In	practice,	almost	always,	the	significance	of	this	differ-
ence	is	evaluated	by	means	of	a	statistical	test.	Theory	and	
application	of	statistical	tests	are	well	established,	but	only	

for	the	case	of	univariate/scalar	observations	(e.g.,	power	
in	 a	 given	 channel	 and	 frequency	 band).	 Care	 must	 be	
taken,	however,	since	power	values	are	non-	normally	dis-
tributed.	Either	normalizing	corrections	or	nonparamet-
ric	statistical	procedures	are	preferred.	Between	condition	
comparisons	of	whole	spatio-	spectral	matrices	(multivari-
ate	observations)	 require	 specialized	 statistical	methods,	
two	of	which	will	be	discussed	in	the	following	(see	4.1.1.	
and	 4.1.2.).	 Both	 methods	 effectively	 deal	 with	 the	 so-	
called	multiple	comparison	problem:	Inflation	of	the	Type	
I	error	 (false	alarm)	 rate,	which	may	occur	 if	univariate	
statistical	tests	are	applied	to	multivariate	observations.

4.1.1	 |	 Methods	based	on	regions	of	interest

A	 region	 of	 interest	 (ROI)	 comprises	 a	 set	 of	 channel-	
frequency	 or	 area-	frequency	 pairs	 or	 channel/area-	
time-	frequency	 triplets	 at	 which	 a	 between-	conditions	
difference	is	expected	to	occur.	This	ROI	must	be	chosen	
before	 the	 data	 are	 known.	 If	 the	 power	 values	 (or	 any	
other	measure)	are	averaged	over	these	channel-	frequency	
pairs,	then	the	original	multivariate	problem	reduces	to	a	
univariate	 problem,	 and	 standard	 statistical	 tests	 (t	 test,	
F-	test)	may	be	applied.	There	are	three	ways	of	determin-
ing	an	ROI:	(1)	based	on	published	results	and/or	hypoth-
eses,	 (2)	 based	 on	 an	 anatomical	 atlas,	 in	 an	 estimated	
source	space,	and	(3)	based	on	a	 localizer	(Maris, 2012).	
In	cases	where	published	results	and/or	a	priori	hypoth-
eses	are	used	 for	determining	an	ROI,	preregistration	of	
this	ROI-	based	analysis	is	recommended.	It	is	possible	to	
use	 multiple	 ROIs.	 In	 that	 case,	 Bonferroni	 (usually	 too	
conservative,	as	it	assumes	that	the	tests	are	uncorrelated)	
or	some	other	correction	method	must	be	used	to	prevent	
Type	I	error	inflation	as	a	result	of	the	multiple	tests	(one	
per	ROI).

4.1.2	 |	 Mass	univariate	techniques

In	 its	 simplest	 form,	 the	 mass	 univariate	 technique	 is	 a	
generalization	 of	 the	 ROI-	based	 method,	 with	 one	 ROI	
per	 channel-	frequency	 pair.	 Unfortunately,	 the	 typical	
Bonferroni	correction	drastically	reduces	the	sensitivity	of	
this	approach.	The	overly	conservative	nature	of	Bonferroni	
correction	is	due	to	the	fact	that	many	of	the	statistical	com-
parisons	 are	 not	 independent	 of	 each	 other.	 To	 increase	
sensitivity,	 methods	 have	 been	 proposed	 that	 are	 based	
on	permutation	test	statistics	that	depend	on	all	channel-	
frequency	pairs	jointly	(Maris	&	Oostenveld, 2007).	These	
include	 selecting	 the	 maximum	 (minimum)	 test-	statistic	
from	each	permutation	(Karniski	et	al., 1994)	and	forming	a	
tmax	or	Fmax	distribution	that	is	used	in	place	of	the	statistical	
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reference	distribution	 (student’s	 t,	or	F-	distribution).	The	
most	popular	of	these	statistics	is	the	so-	called	cluster- based 
tests,	which	 start	 from	 the	univariate	 test	 statistics	 for	all	
channel-	frequency	pairs	and	then	combine	these	test	statis-
tics	in	a	way	that	reflects	the	spatio-	spectral	clustering	that	
one	observes	with	genuine	physiological	effects.	Using	the	
permutation	distribution	as	a	reference	distribution,	these	
cluster-	based	tests	control	for	the	Type	I	Error	rate	under	
the	 null	 hypothesis	 of	 identical	 probability	 distributions	
for	the	raw	spatiotemporal	data	in	the	two	conditions	and	
therefore	also	for	the	derived	spatio-	spectral	data	(Maris	&	
Oostenveld, 2007).

When	reporting	results	from	cluster-	based	permuta-
tion	 tests,	 it	 is	 important	 to	be	aware	 that	 the	null	hy-
pothesis	pertains	to	the	whole	raw	spatiotemporal	data	
matrix.	Therefore,	it	is	not	permissible	to	make	spatially	
and/or	 spectrally	 specific	 inferences	 such	 as,	 “There	
was	an	effect	over	area	A	in	frequency	band	X,	but	not	
over	area	B	 in	 frequency	band	Y.”	This	point	has	been	
made	 in	 several	 publications	 (Maris,  2012;	 Maris	 &	
Oostenveld,  2007;	 Piai	 et	 al.,  2015).	 For	 a	 tutorial	 and	
recommendations	regarding	appropriate	language,	read-
ers	are	referred	to	the	helpful	discussion	by	Sassenhagen	
and	Draschkow (2019).

4.1.3	 |	 Usage	of	principal	component	
analysis	for	data	reduction

PCA	is	often	applied	to	spatiotemporal	electrophysiological	
data	to	identify	linear	combinations	of	sensors	(i.e.,	com-
ponents)	 that	explain	 the	most	variance.	Decomposition	
methods	related	to	PCA	have	been	proposed	for	the	analy-
sis	of	coherence	patterns	across	electrode	locations.	These	
are	routinely	obtained	in	the	form	of	cross-	spectral	density	
or	coherence	matrices	for	a	range	of	frequencies	(van	der	
Meij	et	al., 2015).	These	methods	do	not	produce	compo-
nents	that	explain	the	most	variance,	but	components	that	
explain	the	data	using	the	most	parsimonious	three-	way	
tensor	 decomposition.	 Although	 these	 methods	 produce	
physiologically	 plausible	 components	 (see	 van	 der	 Meij	
et	al., 2016),	they	do	not	necessarily	correspond	to	existing	
physiological	sources.	This	is	because,	in	most	cases,	there	
are	a	large	number	of	plausible	arrangements	of	the	vari-
ance	across	coherence	patterns	that	can	equally	account	
for	the	data,	making	solutions	not	unique.

4.1.4	 |	 Bayesian	statistics	and	machine	
learning	approaches

In	addition	to	the	multivariate	and	mass	univariate	meth-
ods	for	traditional	null	hypothesis	testing	described	above,	

the	 field	 of	 neuroscience	 has	 seen	 a	 steady	 increase	 in	
usage	 of	 Bayesian	 approaches	 for	 modeling	 and	 statisti-
cal	testing.	Bayesian	approaches	share	the	common	goal	
of	quantifying	the	extent	to	which	prior	knowledge	is	up-
dated	by	new	data	(van	de	Schoot	et	al., 2021).	In	the	con-
text	 of	 neural	 time	 series	 analysis,	 Bayesian	 approaches	
have	been	used	for	combining	information	obtained	from	
different	measurement	modalities	(Kook	et	al., 2021),	as	
well	as	hierarchically	modeling	different	sources	of	vari-
ance	 that	contribute	 to	a	neural	 time	series	 (Gorrostieta	
et	al., 2013;	Zhang	et	al., 2016).	An	increasingly	popular	
Bayesian	index	is	the	Bayes	factor,	which	has	some	simi-
larity	 in	use	and	 interpretation	with	 traditional	null	hy-
pothesis	test	statistics	(e.g.,	p	values).	However,	its	usage	
remains	a	matter	of	debate	in	the	literature,	and	research-
ers	are	encouraged	to	consider	potential	limitations,	such	
as	the	dependence	on	the	precise	shape	of	 the	prior	dis-
tributions	that	are	compared	by	means	of	 the	Bayes	fac-
tor,	along	with	potential	strengths	(Keysers	et	al., 2020).	
In	 hypothesis	 testing,	 Bayes	 factors	 are	 frequently	 used	
to	express	 the	amount	of	 support	 for	a	given	hypothesis	
over	another	(e.g.,	the	null	hypothesis	vs.	alternative	hy-
pothesis).	 For	 example,	 the	 extent	 to	 which	 differences	
in	 EEG	 signals	 across	 different	 experimental	 conditions	
are	in	agreement	with	one	of	several	a	priori	probability	
distributions	is	readily	expressed	as	a	Bayes	factor	(Kopp	
et	al., 2016).	Bayes	factors	can	also	be	used	to	transitively	
compare	 different	 models	 to	 each	 other	 (see	 Thigpen	
et	al., 2019,	for	an	example).	Because	Bayes	factors	do	not	
involve	rejection	of	a	null	hypothesis	based	on	the	likeli-
hood	of	a	parameter	to	occur,	they	are	not	as	strongly	af-
fected	by	multiple-	comparison	problems	that	need	 to	be	
considered	in	traditional	frequentist	null	hypothesis	test-
ing	(e.g.,	Gelman	et	al., 2012).	As	such,	they	can	be	used	
for	scalp	mapping	(e.g.,	Stegmann	et	al., 2020)	as	well	as	
point-	wise	time	series	analyses	(Antov	et	al., 2020).	A	final	
consideration	is	that	Bayes	factors	may	be	used	to	quan-
tify	the	absence	of	evidence,	such	as	support	for	the	null	
hypothesis,	 which	 is	 not	 readily	 accomplished	 in	 a	 null	
hypothesis	testing	framework	(Keysers	et	al., 2020).

An	 extensive	 discussion	 of	 Bayesian	 statistical	 tech-
niques	is	outside	the	scope	of	the	present	report.	A	general	
set	of	guidelines	are	given	in	van	de	Schoot	et	al. (2021).	
Authors	 using	 Bayesian	 approaches	 in	 electrophysio-
logical	 work	 are	 directed	 to	 recent	 recommendations	
for	 reporting	 and	 preregistration	 of	 ERP	 studies	 (Paul	
et	al., 2021),	which	contain	suggested	language	and	infor-
mation.	Notably,	replication	of	Bayesian	methods	involves	
a	precise	description	of	the	priors	along	with	the	models	
included	in	the	analysis.	If	Bayes	factors	are	used,	includ-
ing	a	rationale	for	the	interpretation	of	different	levels	of	
Bayes	factors,	as	well	as	what	exact	software	implementa-
tion	was	used	for	their	estimation,	is	recommended.
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Finally,	 machine	 learning	 approaches	 have	 been	 in-
creasingly	 used,	 notably	 in	 decoding	 analyses	 that	 use	
classification	 algorithms	 such	 as	 logistic	 regression,	 dis-
criminant	 analysis,	 and	 support	 vector	 machines	 (e.g.,	
Bae	 &	 Luck,  2019).	 For	 example,	 researchers	 have	 used	
these	 techniques	 to	 examine	 the	 extent	 to	 which	 time-	
varying	alpha	power	 topographies	contain	decodable	 in-
formation	regarding	an	observer’s	visuo-	spatial	attention	
focus	 (Bae	 &	 Luck,  2018)	 or	 responses	 to	 conditioned	
stimuli	(Riels et al., 2022).	When	using	these	methods,	
reporting	the	specific	algorithm	used,	including	the	soft-
ware	 implementation,	 along	 with	 the	 exact	 method	 for	
cross-	validation	and	model	evaluation,	 is	 recommended.	
Decoding	(i.e.,	classification)	accuracy	should	be	reported	
as	a	proportion	and	confusion	matrices	indicated	if	possi-
ble.	If	resampling	(e.g.,	permutation)	methods	are	used	to	
address	multiple	comparisons,	 then	the	reporting	guide-
lines	 in	Section 4.1	should	be	applied.	 In	a	similar	vein,	
inverted	encoding	models	have	been	increasingly	used	to	
examine	tuning	of	neural	variables	to	specific	feature	di-
mensions,	such	as	orientation,	 location,	or	facial	expres-
sion	(e.g.,	Garcia	et	al., 2013).	When	using	such	models,	
including	 a	 description	 of	 how	 model	 fit	 was	 evaluated	
and	how	noise	was	addressed	(Liu	et	al., 2018)	is	recom-
mended.	 Similarly,	 when	 model	 weights	 are	 interpreted	
and	reported,	including	a	discussion	of	how	weights	were	
extracted	 from	 the	 model	 and	 how	 noise	 contributions	
were	addressed	(Haufe	et	al., 2014)	is	recommended.

4.2	 |	 Recommendations for data figures

Many	of	the	analytical	strategies,	methods,	and	algorithms	
discussed	above	make	use	of	high-	dimensional	aspects	of	
neurophysiological	 time	series,	often	reflecting	a	combi-
nation	of	spatial,	temporal,	and/or	frequency	information.	
Therefore,	 the	 resulting	 data	 figures	 are	 often	 high-	
dimensional	(e.g.,	connectivity	matrices,	cross-	frequency	
interaction	maps)	and	therefore	difficult	to	present	in	two-	
dimensional	journal	space.	Color	coding	of	third	dimen-
sions	and	use	of	multi-	panel	figures	are	widely	accepted	
ways	 to	address	 this	 issue.	To	 the	extent	 that	most	pub-
lication	 outlets	 provide	 options	 for	 supplemental	 online	
materials,	 authors	may	also	wish	 to	document	complex,	
high-	dimensional	 data	 using	 suitable	 digital	 representa-
tions,	which	may	include	data	shown	in	figures,	movies,	
or	code.	In	a	similar	vein,	sharing	code	and	data	through	
widely	 accessible	 portals	 such	 as	 github,	 https://github.
com,	 the	 open	 science	 framework,	 https://osf.io,	 open-
neuro,	 https://openn	euro.org,	 databrary,	 https://nyu.
datab	rary.org,	 etc.,	 further	 enables	 readers	 to	 illustrate	
data	 in	 a	 way	 that	 is	 intuitive	 to	 them,	 thus	 facilitating	
communication,	reproducibility,	and	replicability.

4.2.1	 |	 Recommendations	for	illustrating	
distributions	of	the	dependent	variable

Reduced	 data,	 pooled	 across	 frequencies,	 sensors,	 time	
points,	etc.,	are	often	used	as	dependent	variables	for	hy-
pothesis	 testing.	 A	 discussion	 of	 how	 to	 illustrate	 such	
low-	dimensional	data	is	outside	the	scope	of	the	present	
paper.	Many	journals	have	encouraged	authors	to	join	re-
cent	discipline-	wide	trends	toward	providing	distribution-	
based	 figures	 instead	 of,	 or	 in	 addition	 to,	 bar	 plots	
showing	 measures	 of	 central	 tendency.	 One	 goal	 of	 this	
trend	 is	 to	 clearly	 illustrate	 inter-	participant	 variability,	
aiding	 in	 communication	 of	 robustness	 and	 effect	 size.	
Such	 figure	 types	 include	 scatter	 plots,	 so-	called	 violin	
plots,	pirate	plots,	histograms,	and	smoothed	distribution	
plots,	popular	in	the	context	of	Bayesian	approaches.	They	
are	 useful	 for	 illustrating	 dependent	 variables	 after	 sub-
stantial	data	reduction	and	allow	readers	to	assess	consist-
ency	 of	 effects,	 as	 well	 as	 providing	 a	 visual	 impression	
of	 effect	 size	 (Rousselet	 et	 al.,  2016).	 Many	 widely	 used	
statistics	 packages	 include	 methods	 for	 producing	 such	
distribution-	based	 plots	 (e.g.,	 Kampstra,  2008).	 Often,	
distribution-	based	 figures	 will	 be	 accompanied	 by	 data	
figures	 illustrating	 spatial	 and	 temporal	 aspects	 of	 the	
data,	discussed	next.

4.2.2	 |	 Recommendations	for	line	graphs

Two-	dimensional	plots	such	as	mean	power	values	across	
time	points,	frequencies,	and	sensors	often	serve	to	illus-
trate	time	course	data,	similar	 to	 figures	 in	ERP	studies.	
Spectral	 power	 is	 also	 often	 illustrated	 as	 a	 line	 or	 bar	
graph	plotted	with	two	dimensions,	frequency	and	power.	
Often,	recommendations	for	line	graphs	parallel	published	
recommendations	for	ERP	work	(Keil	et	al., 2014;	Picton	
et	al., 2000).	These	recommendations	include	clearly	labe-
ling	the	x	axis	and	y	axis,	with	reference	time	points	(e.g.,	
stimulus	onset)	indicated	by	appropriate	markers	such	as	
a	vertical	 line.	The	physical	unit	 should	be	prominently	
labeled	near	the	appropriate	axis,	which	will	often	be	the	
y	 axis.	 Furthermore,	 clearly	 visible	 tick	 marks	 at	 appro-
priate	spacing	assist	readers	in	correctly	identifying	time	
ranges	of	interest.

In	 addition,	 shaded	 error	 areas	 around	 line	 plots	
(Figure  8)	 have	 become	 increasingly	 used	 and	 are	 rec-
ommended	because	they	allow	readers	to	recognize	time	
ranges	 with	 higher	 versus	 lower	 variability.	 The	 type	 of	
variability	 index	 that	 is	most	helpful	will	depend	on	 the	
study	questions	and	the	hypotheses	being	tested.	Metrics	
of	 between-	subjects	 variability	 (e.g.,	 the	 standard	 devia-
tion	or	standard	error	of	the	mean)	are	most	informative	
in	 studies	 with	 between-	subjects	 designs,	 such	 as	 group	

https://github.com
https://github.com
https://osf.io
https://openneuro.org
https://nyu.databrary.org
https://nyu.databrary.org
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comparisons	 or	 correlational	 studies	 of	 inter-	individual	
differences.	 They	 are	 also	 widely	 used	 to	 illustrate	 vari-
ability	 in	 within-	subjects	 designs.	 As	 an	 alternative,	
these	latter	studies	may	also	consider	displaying	suitable	

estimates	of	within-	subjects	variability	across	conditions,	
often	more	pertinent	for	illustrating	the	robustness	of	con-
dition	differences	(Cousineau, 2005,	2017).

4.2.3	 |	 Recommendations	for	higher-	
dimensional	figures	such	as	time-	by-	
frequency	plots

Displaying	changes	in	power	across	a	time-	by-	frequency	
plane	is	often	accomplished	by	color	coding	power,	phase-	
locking,	or	another	frequency	domain	index	as	a	third	di-
mension,	resulting	in	a	figure	as	shown	in	Figure 9.	Given	
concerns	discussed	above	regarding	broadband	phenom-
ena	being	misinterpreted	as	band	specific,	it	is	highly	rec-
ommended	that	time-	frequency	plots	include	a	sufficient	
number	 of	 frequencies	 to	 illustrate	 the	 extent	 to	 which	
any	effects	are	specific	to	a	given	frequency	band.	Often,	
this	will	involve	including	low	frequencies,	which	assists	
in	identifying	transient	responses	masquerading	as	high-	
frequency	 oscillatory	 bursts.	 Conveying	 the	 information	
of	 interest	 is	 facilitated	 by	 selecting	 a	 color	 or	 grayscale	
scheme	that	appropriately	translates	distance	in	data	space	
into	 distance	 in	 color	 space.	 For	 example,	 traditionally	
used	color	schemes	ranging	from	blue	to	red	often	distort	
the	representation	of	the	numerical	range	and	make	small	
differences	in	the	upper	range	of	the	distribution	appear	
larger	 than	 they	 are	 (Karim	 et	 al.,  2019).	 Furthermore,	
the	scientific	community	has	increasingly	prioritized	ac-
commodating	 those	 with	 color	 vision	 conditions	 such	
as	 red-	green	 blindness	 or	 yellow-	blue	 blindness.	 Many	

F I G U R E  8  Example	of	a	line	figure	with	corresponding	
topography,	showing	time-	varying	alpha	power	changes,	expressed	
in	percent	change	from	baseline,	as	indicated	on	the	y	axis.	Data	
from	electrode	location	oz	are	shown,	and	oz	is	highlighted	in	
the	topography	shown	in	the	inset.	The	baseline	segment	used	
for	percent	conversion	is	clearly	marked,	and	a	time	axis	showing	
stimulus	onset	at	time	zero	is	provided.	Shaded	error	bars	(here:	
Standard	error	of	the	mean)	illustrate	the	variability	of	the	
time-	varying	power	change	across	participants.	The	averaged	
topography	across	a	time	window	(red	line	segment)	is	shown	as	
the	inset,	highlighting	the	electrode	from	which	the	data	are	taken.	
It	is	accompanied	by	a	color	bar,	which	is	labeled	with	the	unit	
used	(here:	Percent	change)

F I G U R E  9  Example	of	a	time-	frequency	plot,	showing	the	time-	varying	power	at	a	range	of	different	frequencies.	The	frequency	axis	
is	clearly	labeled	with	the	frequencies	depicted	in	each	row	of	the	plot.	Data	from	electrode	location	oz	are	shown,	indicated	in	the	top	left	
corner.	The	baseline	segment	used	for	percent	change	conversion	is	clearly	marked,	and	a	time	axis	showing	stimulus	onset	at	time	zero	is	
provided.	It	is	accompanied	by	a	color	bar,	which	is	labeled	with	the	unit	used	(here:	Percent	change	from	baseline).	Note	that	calculating	
percent	change	implicitly	assumes	a	multiplicative	model	of	change	in	oscillatory	power.	Authors	may	wish	to	make	this	assumption	explicit	
and	provide	the	underlying	rationale	in	the	manuscript
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colormaps	exist	 that	accomplish	veridical	representation	
of	 the	 numerical	 range	 while	 also	 allowing	 people	 with	
color	vision	conditions	to	glean	the	appropriate	informa-
tion	 from	 the	 figure	 (Nuñez	 et	 al.,  2018).	 Examples	 in-
clude	colormaps	with	names,	such	as	“Viridis”,	“Magma”,	
or	“Cividis”,	 implementable	 in	most	programming	envi-
ronments.	Authors	are	encouraged	to	consider	the	range	
of	the	data	and	select	an	appropriate	colormap,	ensuring	a	

fair	and	complete	representation	of	the	data	range	across	
the	color	range.	For	example,	in	raw	power	plots	without	
baseline	removal	or	normalization,	power	values	are	non-	
negative,	and	thus	a	unipolar	map	is	preferred.

As	discussed	above	(see	Section 3.2),	temporal	smear-
ing	is	a	challenge	for	the	interpretation	of	time-	frequency	
information.	Thus,	sufficient	time	before	and	after	events	
of	 interest	 should	 be	 included	 in	 the	 figure,	 allowing	

T A B L E  2 	 Checklist	for	spectral	analyses

# Information to be included in the manuscript Sections Completed?

1. Specifying	the	inputs and outputs	of	all	algorithms	used	in	the	processing	pipeline 1.3 Y/N

2. A	discussion	of	how oscillatory activity was conceptualized	relative	to	1/f	noise	
and/or	other	broadband	phenomena	(underlying	model)

1.2,	2.1 Y/N

3. A	rationale	for	the	choice	of	measurement	of	power in a specific frequency band,	
including	how	nonperiodic	(1/f)	contributions	to	the	spectrum	were	addressed

3.1 Y/N

4. A	statement	describing	the	specific type of Fourier-  or non- Fourier- based 
algorithm	used	for	transformation	from	the	time	domain	to	the	frequency	domain.

For	non-	Fourier	analysis:	(1)	If	using	parametric	spectral	analysis,	the	extent	to	which	
the	assumption	that	the	observed	data	are	reflections	of	stochastic	processes	
identified	through	autoregressive	models.	Tests	of	statistical	stationarity	of	the	time	
series	can	be	used	to	address	this	assumption.	(2)	If	using	data-	driven	methods	(e.g.,	
Half-	wave	analyses,	matching	pursuit	algorithms,	etc.),	a	description	of	the	specific	
algorithm	used,	including	code	and	example	data,	and	preprocessing	steps

1.1,	1.3,	2.4,	&	3.1 Y/N

5. The	exact duration of the time segments	(e.g.,	duration	of	segmented	trials	
and	the	duration	of	the	temporal	integration	windows)	used	for	transformation	
into	the	frequency	domain	for	each	condition	of	interest.	In	addition,	the	total	
number	of	segments	(e.g.,	trials	per	condition)	entering	an	averaged	spectrum,	
along	with	how	data	epochs	were	combined	within	and	across	recordings	(e.g.,	
overlapping	windows)

1.3.2,	2.3,	3.1,	3.2,	&	
3.1.5

Y/N

6. The	type,	total	number	of,	overlap	between,	and	duration	of	any	taper window 
functions,	along	with	their	ramp-	on	and	ramp-	off	duration.	If	alternative	and/
or	additional	steps	were	taken	to	address	edge	artifacts,	these	should	be	stated.	
If	applicable,	the	choice	of	taper	window	function	should	be	specified	as	being	
guided	by	computational	principles	and/or	by	aiming	to	replicate	current	
methods	(e.g.,	Hann	or	Hamming	window)

3.1.3	&	3.1.5 Y/N

7. If	zero- padding	is	applied,	the	number	and	location	of	added	zeros	(e.g.,	before	the	
time	series,	after	the	time	series,	or	both	before	and	after	the	time	series)

2.3 Y/N

8. All	normalization steps	(e.g.,	by	length	of	time,	multiplication	of	the	lower	half	of	
the	spectrum,	or	by	the	complex	conjugate,	etc.)	applied	to	the	spectral	power	or	
power	density	calculation

3.1.1	&	3.1.5 Y/N

9. The	native frequency resolution of the spectrum	(e.g.,	1/(epoch	duration	in	
seconds).	In	addition,	the	number	of	frequency	bins	extracted	for	a	specific	band	
of	interest,	and	the	range	of	these	bins	(e.g.,	7.98 Hz	to	11.97 Hz)

1.3.2,	2.3,	&	3.1.5 Y/N

10. Whether	analyses	were	conducted	using	single trials or the average	across	trials 3.2.1 Y/N

11. How band power was measured from a spectrum.	The	following	recommendations	
are	provided:	(1)	If	measuring	raw	band	power,	report	the	full	spectrum	the	band	
was	extracted	from,	how	the	band	was	measured	(i.e.,	mean,	median,	and	peak),	
and	how	1/f	effects	or	other	spectral	shape	effects	were	addressed.	(2)	If	measuring	
relative	band	power,	the	full	power	spectrum	should	be	reported,	along	with	how	1/f	
effects	or	other	spectral	shape	effects	were	addressed	(note	that	this	method	is	not	
recommended).	(3)	If	measuring	band	power	ratios	between	specific	frequencies,	
describe	the	full	power	spectrum,	including	the	calculation	of	specific	frequency	
band	power	(note	that	this	method	is	not	recommended)

3.1.2 Y/N
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readers	 to	 assess	 the	 variability	 in	 the	 information	 pro-
vided	 and	 to	 understand	 the	 time	 course.	 In	 the	 case	
of	 spectrograms	 or	 similar	 analyses	 with	 fixed	 window	
length,	it	is	also	helpful	if	the	figure	includes	a	represen-
tation	of	 the	window	 length	used	 to	compute	 the	 time-	
frequency	representation.	Authors	may	opt	to	discuss	key	
metrics	of	temporal	smearing	such	as	the	FWHM	or	stan-
dard	 deviation	 in	 the	 time	 domain	 or	 in	 the	 frequency	
domain	in	the	figure	caption	to	facilitate	reading.

4.2.4	 |	 Recommendations	for	figures	with	
topographical	information

Many	 methods	 exist	 for	 topographically	 mapping	 physi-
cal	or	statistical	indices	of	frequency	domain	activity	onto	
spatial	 representations	 of	 the	 head	 or	 brain.	 Often,	 these	

will	involve	interpolation	of	values	into	the	inter-	electrode	
spaces	on	a	scalp	volume	or	brain	volume.	In	these	cases,	
specifying	 the	 interpolation	 method	 (e.g.,	 linear	 interpo-
lation,	 spline	 interpolation,	 machine	 learning-	based	 ap-
proaches)	 is	 critical	 for	 reproduction	and	communication	
of	findings,	because	some	interpolation	techniques	contain	
underlying	assumptions	regarding	the	nature	of	the	inter-
polated	data	 (Brunet	et	al., 2011;	Perrin	et	al., 1987),	and	
different	interpolation	methods	may	yield	drastically	differ-
ent	results	at	certain	locations	of	the	brain	or	head	volume.

4.2.5	 |	 Recommendations	for	figures	
showing	spatial	relations

Authors	may	be	interested	in	examining	spatial	relations	be-
tween	sensors	or	brain	regions.	A	wide	variety	of	methods	is	

T A B L E  3 	 Checklist	for	time-	frequency	analyses

# Information to be included in the manuscript Sections Completed?

1. The	specific	stage of processing in which time- frequency analysis was applied	
(e.g.,	single-	trials,	after	trial	averaging,	etc.).	This	clarifies	which	aspect(s)	of	
oscillatory	activity	(e.g.,	spontaneous	and/or	induced,	evoked,	etc.)	are	being	
observed.	If	averaged potentials of each trial were subtracted	prior	to	
conducting	time-	frequency	analyses	on	single	trials,	this	step	should	be	stated	along	
with	figures	depicting	the	averaged	potential	in	both	time	and	frequency	domains

3.2.1 Y/N

2. For	authors	using	Fourier-	based	time-	frequency	analyses	(spectrograms),	the	following	
recommendations	are	provided	for	each	specific	approach:	(1)	If	using	spectrograms,	
or	moving-	window	DFT/FFT	analyses,	report	the	specific window size and step 
size.	Additional	within- window averaging	achieved	via	algorithms	(e.g.,	Welch	
periodogram	method)	should	also	be	reported.	(2)	If	using	multitaper	analyses,	
the	type	of	tapering windows	used,	total	number	used,	their	center	frequencies,	
whether	any	smoothing	factors	are	applied,	and	the	specific	algorithms	used	to	form	
their	shapes	should	be	reported.	(3)	If	using	complex	demodulation,	the	frequencies	
examined,	and	the	specific	properties of the low- pass filter	used	(i.e.,	filter	type,	
order,	and	cutoff	frequency)	should	be	reported

3.2.2 Y/N

3. For	authors	conducting	time-	frequency	analyses	based	on	time	domain	filtering	
methods	(i.e.,	Filter-	Hilbert	or	similar	approaches),	the	software and version 
number of the Hilbert transform	used	to	identify	the	phase-	shifted	version	of	the	
empirical	signal.	In	addition,	authors	should	state	the	specific properties of band- 
pass filters	(i.e.,	filter	types,	order,	and	cutoff	frequencies)

3.2.3 Y/N

4. If	using	wavelet-	based	methods	for	time-	frequency	analyses,	include	the	smoothing/
smearing for the minimum and maximum frequency of interest	and	indicate	
the	maximal	temporal	and	frequency	smoothing	for	a	specific	wavelet	family.	In	
addition,	if	using	Morlet	wavelets,	include	the	Morlet	parameter	(m)	indicating	the	
trade-	off	between	time	and	frequency	smoothing	and	smoothing	values	in	the	time	
(σt)	and	frequency	(σf)	domains

3.2.4 Y/N

5. As	for	frequency	domain	analyses,	specify	the duration of analytical time segments 
used,	with	pre-		and	post-	event	onset	durations.	In	addition,	include	the	number	of	
time	segments	for	each	condition/group

3.2.6 Y/N

6. Descriptions	of	any nonlinear transformations and/or baseline adjustment	
that	were	used	prior	to	statistical	analyses,	accompanied	by	a	rationale	for	these	
decisions.	Specifically,	include the duration used as a baseline	and	the	type	of	
algorithm	(e.g.,	division,	subtraction,	etc.)	used	for	this	adjustment

3.2.6 Y/N
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available,	as	discussed	above	(see	Section 3.4),	often	resulting	
in	high-	dimensional	dependence	information,	sometimes	in-
cluding	 directional	 information.	 Major	 figure	 types	 include	
color-	coded	matrices	illustrating	pairwise	dependence	infor-
mation	such	as	inter-	site	phase-	locking	or	Granger	causality	
and	 graphs	 illustrating	 connectivity/dependency	 as	 lines	 or	
arrows	 between	 spatial	 nodes.	 For	 color-	coded	 dependence	
maps,	the	recommendations	for	time-	frequency	plots	above	
apply.	Using	clearly	labeled	axes	and	including	a	clearly	vis-
ible	color	bar,	mapping	colors	to	numerical	values,	is	recom-
mended.	 Connectivity	 graphs	 with	 nodes	 likewise	 benefit	
from	clearly	labeled	nodes	and	require	clear	definitions	and	
figure	legends	defining	the	implications	of	graphical	elements,	
such	 as	 line	 thickness,	 arrow	 direction,	 line	 style,	 shading,	
or	any	other	graphical	indicators	of	inter-	node	dependence.	
Any	thresholding	used	to	limit	the	lines	shown	should	also	be	
made	explicit	in	the	methods	and	figure	caption.

5 	 | 	 CHECKLISTS

In	 order	 to	 facilitate	 communication	 concerning	 ter-
minology,	 best	 practices	 in	 methodology,	 assessment,	
transparency,	and	replication,	and	to	provide	a	general	

guideline	 for	 studies	 concerning	 oscillatory	 brain	 ac-
tivity,	we	have	provided	a	set	of	detailed	checklists	au-
thors	 are	 encouraged	 to	 address	 in	 their	 manuscripts	
for	publication.	Table 2	covers	principal	methodologi-
cal	elements	of	spectral	analyses.	Given	that	all	forms	
of	 oscillatory	 measures	 (e.g.,	 time-	frequency	 analysis,	
phase-	based	analyses,	etc.)	include	these	fundamental	
properties,	 researchers	 conducting	 any	 form	 of	 spec-
tral	analysis	should	provide	the	information	in	Table 2.	
Table 3	expands	upon	 the	 spectral	domain	guidelines	
by	 including	 information	 pertinent	 to	 time-	frequency	
analyses.	 This	 encompasses	 what	 specific	 elements	
should	 be	 reported	 based	 on	 the	 methodology	 used	
to	 conduct	 time-	frequency	 analysis.	 Additional	 tables	
provide	 recommendations	 for	 phase-	based	 analyses	
(Table 4),	connectivity	analyses	(Table 5),	and	coupling	
analyses	(Table 6).	Additional	guidelines	for	reporting	
figures	can	be	found	in	Table 7.	Although	not	directly	
covered	 here,	 authors	 are	 also	 encouraged	 to	 include	
additional	details	highlighted	in	previous	reports	(Keil	
et	 al.,  2014;	 Picton	 et	 al.,  2000)	 pertaining	 to	 general	
EEG/MEG	 methods,	 such	 as	 equipment	 recording	
characteristics,	preprocessing	steps,	and	stimulus	tim-
ing	parameters.

T A B L E  4 	 Checklist	for	phase-	based	analyses

# Information to be included in the manuscript Sections Completed?

1. Properties of filters used	(i.e.,	filter	type,	order,	and	cutoff	frequency).	A	high	level	
of	detail	is	needed	especially	if	using	high	filter	orders	and/or	filtering	in	narrow	
frequency	bands

3.3.1 Y/N

2. If	applying	advanced	artifact removal techniques	(e.g.,	ICA),	authors	are	
encouraged	to	consider	reporting	results	with	and	without	the	use	of	these	
methods.	Specific	preprocessing pipeline steps	should	also	be	described

3.3.1 Y/N

3. The	input of phase- based analyses,	including	the	frequency	specificity	of	the	
algorithm	and/or	filters	used.	Furthermore,	authors	should	not	estimate	phase	of	
broadband	signals.	Non-	normality	of	indices	(e.g.,	being	bounded	between	0	and	
1)	should	be	addressed	appropriately	in	averaging	and	statistical	testing

3.3.1 Y/N

4. The	number of trials	used	in	the	analysis	per	condition	or	group.	Should	be	reported	
along	with	steps	taken	to	address	unequal	trials	counts.	For	example,	a	description	
of	how	equal	trial	numbers	for	each	condition	were	achieved	by	randomly	
dropping	trials	or	how	the	algorithm	used	addresses	unequal	trial	counts

3.3.1 Y/N

T A B L E  5 	 Checklist	for	connectivity	analyses

# Steps to be addressed in the manuscript Sections Completed?

1. The	specific	source- modeling	approach	is	described,	including	the	metrics	and	
algorithms	used	with	references	to	these	methods.	This	should	also	be	done	if	using	
Graph	theory	to	assess	connectivity	matrices

3.4.3 Y/N

2. Methods	and	algorithms	used	to	address	volume conduction	and/or	spatial	smearing	
are	detailed,	providing	specific	references	or	mathematical	formulations

3.4.4 Y/N

3. State	the	extent	to	which	spatial	nodes	were	examined	ad hoc or specified a priori 3.4.4 Y/N
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T A B L E  6 	 Checklist	for	coupling	analyses

# Steps to be addressed in the manuscript Sections Completed?

1. The	specific preprocessing steps and algorithm	used	to	perform	cross-	frequency	
coupling	analyses.	A	statement	is	included	regarding	the	number	of	trials per 
condition	and	steps	used	to	ensure	equal	trials	per	condition.	If	binning	is	used,	
state	the	number	of	bins	used

3.5.3 Y/N

2. The	extent	to	which	variables are normally distributed	is	described	along	with	
appropriate	parametric	or	nonparametric	statistical	tests.	This	often	will	include	
showing	the	range	and	distribution	of	variables	used	in	analyses.	If	data	are	
randomized/permuted	to	determine	statistical	significance,	the	specific	algorithms 
and code	used	should	be	reported

3.5.4 Y/N

3. It	is	stated	whether	coupling	analyses	and	randomization/permutation	were	conducted	
within	participants,	between	participants,	or	in	a	mixed	design

3.5.4 Y/N

T A B L E  7 	 Checklist	for	data	figures

# Steps to be addressed Sections Completed?

1. Including	distributions	in	figures	is	encouraged	where	possible.	Distribution-	based	figures	
are	preferred,	showing	inter-	participant	variability,	such	as	scatterplots,	violin	plots,	pirate	
plots,	histograms,	smoothed	distribution	plots,	and/or	bar/line	plots	including	individual	
subject	data	points.

Often,	within-	participant	variability	will	be	of	greater	interest,	and	thus	authors	may	wish	to	
consider	connected	line	plots	displaying	within-	participant	effects	for	each	participant

4.2.1 Y/N

2. If	using	line	graphs	to	represent	power	values	across	time,	frequency,	or	sensor(s)/sources,	the	
x-  and y- axes are clearly labeled	with	reference	points	associated	with	specific	markers	
(e.g.,	time	points	with	a	vertical	line	indicating	stimulus	onset).	The	unit	of	measurement	
is	labeled	near	each	respective	axis,	with	clear	tick	marks	indicating	x	and	y	ranges	of	
interest.

Authors	may	also	consider	applying	shaded	areas	along	line	plots	to	indicate	ranges	with	
lower	versus	higher	variability

4.2.2 Y/N

3. If	displaying	changes	in	frequency	power	across	time,	authors	may	use	color	coding	to	
illustrate	the	third	dimension	(e.g.,	power).	In	addition	to	the	requirements	described	for	
line	plots	(i.e.,	clearly	labeled	x-		and	y-	axes	with	respective	units),	time-	frequency	plots	
should	contain	sufficient frequencies above and below a range where an effect 
is observed	to	demonstrate	frequency	specificity	(e.g.,	to	demonstrate	specificity	of	
changes	at	8–	12 Hz,	a	y	range	that	extends	beyond	this	region	is	needed,	such	as	from	2	to	
50 Hz).	Similarly,	time	units	should	extend	far	before	and	after	events	of	interest	to	allow	
for	assessment	of	any	temporal	smearing	effect.	Furthermore,	authors	should	use	color	
schemes	that	facilitate	veridical	representations	of	value	ranges	and	accommodate	those	
with	color	vision	deficits

If	using	a	spectrogram,	or	moving-	window	approach,	authors	are	encouraged	to	include	a	
figure	element	depicting	the	window	length	used.

4.2.3 Y/N

4. If	depicting	topography	of	frequency	domain	activity	across	the	scalp,	include	the	
interpolation method	used	for	calculating	values	into	an	inter-	electrode	space	across	the	
scalp

4.2.4 Y/N

5. If	reporting	spatial	relationships	between	sensors/sources,	figures	using	color-	coded	matrices	
to	depict	pair-	wise	dependent	information	and/or	graphs	demonstrating	connectivity	
lines/arrows	between	spatial	nodes	may	be	used.	Include clearly labeled x-  and y- axes 
and color bars. For connectivity graphs, nodes should be clearly labeled

4.2.5 Y/N
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