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Abstract
Since its beginnings in the early 20th century, the psychophysiological study 
of human brain function has included research into the spectral properties of 
electrical and magnetic brain signals. Now, dramatic advances in digital signal 
processing, biophysics, and computer science have enabled increasingly sophis-
ticated methodology for neural time series analysis. Innovations in hardware 
and recording techniques have further expanded the range of tools available 
to researchers interested in measuring, quantifying, modeling, and altering the 
spectral properties of neural time series. These tools are increasingly used in the 
field, by a growing number of researchers who vary in their training, background, 
and research interests. Implementation and reporting standards also vary greatly 
in the published literature, causing challenges for authors, readers, reviewers, 
and editors alike. The present report addresses this issue by providing recom-
mendations for the use of these methods, with a focus on foundational aspects 
of frequency domain and time-frequency analyses. It also provides publication 
guidelines, which aim to (1) foster replication and scientific rigor, (2) assist new 
researchers who wish to enter the field of brain oscillations, and (3) facilitate 
communication among authors, reviewers, and editors.
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1   |   INTRODUCTION, 
DEFINITIONS,  AND BACKGROUND

Rhythmic patterns are ubiquitous in electrophysiolog-
ical recordings from the human brain. Often referred to 
as brain oscillations, these patterns have been examined 
in a rapidly growing literature, using increasingly so-
phisticated algorithms. Growing attention has also been 
captured by other, non-oscillatory properties of brain ac-
tivity, which likewise may be measured using an evolv-
ing set of spectral analysis tools (Donoghue et al., 2020; 
Freeman & Zhai,  2009; Lin et al.,  2016). However, with 
these advancements arrive new challenges to overcome. 
Scientists, acting both as authors and reviewers, may 
struggle to keep up with the wide spectrum of available 
methods. Communication among authors, reviewers, and 
readers may suffer from the lack of a unifying approach 
that includes shared terminology, accepted best practice 
methodology, and effective ways of reporting relevant 
information.

Here, we present a set of recommendations and guide-
lines for reporting on studies using frequency domain 
and time-frequency domain analyses, with the aim of 
facilitating communication within the scientific commu-
nity by identifying common standards. Section  1 intro-
duces definitions, terminology, and foundational aspects 
of these analyses. It may be used as a tutorial overview 
and introduction, providing references to relevant intro-
ductory materials as well as a glossary. Section 2 provides 
recommendations on study planning and discusses dif-
ferent conceptualizations of frequency domain analyses. 
Section  3 covers guidelines for reporting on different 
analytical techniques. Finally, Section 4 provides recom-
mendations for statistical analyses and data presentation 
through figures.

1.1  |  Definitions and taxonomy

Different aspects of neural activity can be extracted from 
scalp-recorded electromagnetic time series, using electro-
encephalography (EEG) and magnetoencephalography 
(MEG). If time anchoring events are present, then event-
related brain responses can be obtained from the EEG/
MEG time series by stimulus-  or response-locked aver-
aging of time-varying signals across trials (for recent re-
views, see Kappenman & Luck, 2012; Luck, 2005). These 
event-related potentials (ERPs) and event-related fields 
(ERFs) are often referred to as transient responses. 
These signals tend to unfold as a sequence of deflections 
varying in duration, each showing distinctive timing rela-
tive to the anchoring event. ERPs and ERFs are repre-
sented in the time domain, graphically illustrated by 
showing voltage or field strength on the y axis and time 
on the x axis. Time domain analyses are also used by re-
searchers interested in brain oscillations, as discussed 
in Sections  1.2, 2.2, and 2.3 (for further discussion, see 
Schaworonkow & Nikulin, 2019). An example of time do-
main and frequency domain representations is shown in 
Figure 1.

By contrast, frequency domain analyses decompose 
neural time series into a weighted sum of a set of elemen-
tary cyclic waves differing in their temporal rate. These 
elementary waves are often called basis functions. Basis 
functions consist of cycles in which a temporal pattern is 
repeated at a given rate. Each temporal rate is measured in 
cycles per second or Hertz (Hz). Higher temporal rates 
have shorter cycle durations, which are also called wave-
lengths or periods. Thus, a given wavelength (cycle du-
ration) is the inverse of frequency. Most readers will be 
familiar with sine and cosine waves, which serve as basis 
functions in Fourier analysis, the most widely used 

K E Y W O R D S

EEG, electrophysiology, frequency domain analysis, MEG, time-frequency analysis

F I G U R E  1   Alpha oscillation 
(~12 Hz) represented in the time domain 
(left panel), and in the frequency domain 
(right panel). Note the units on the x and 
y axes
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algorithm for converting between the time domain to the 
frequency domain. The set of weights given to each wave 
(i.e., each basis function) is called an amplitude spec-
trum; if the square of the amplitude weights is used, it 
is referred to as a power spectrum (see Sections 1.2 and 
1.3 for a discussion of these concepts). In this document, 
we refer to the power spectrum for brevity, and to distin-
guish it from the phase spectrum, which describes the 
temporal relation of the signal relative to the basis func-
tions at each frequency. Figure  2 illustrates some of the 
fundamental properties of oscillatory time series as well 
as the elements of frequency domain analyses: frequency, 
power, and phase. For example, the oscillation depicted 
in orange may have higher frequency (Figure 2a), greater 
power (Figure 2b), or different phase (Figure 2c) than the 
signal shown in blue.

Mathematical transformations that produce a spec-
trum (i.e., the representation of features as a function 
of frequency) are referred to as spectral analyses. A 
power spectrum is graphically illustrated with frequency 
on the x axis and power on the y axis (see Figure 1, right 
panel). Finally, various combinations of event-related and 
frequency domain analyses allow researchers to study 
changes in the amplitude or power spectrum over time, re-
ferred to as an evolutionary spectrum or spectrogram. 

The spectrogram is determined using methods referred 
to as time-frequency analysis (TFA). Sometimes, the 
term event-related spectral perturbations (ERSPs) is 
used (Makeig et al., 2004) to indicate a focus on changes in 
spectral properties over time, rather than on their absolute 
values.

Time domain averaging methods are typically used 
when the aim is to study transient activity that arises in re-
sponse to (or in preparation for) anchoring events, such as 
the onset of a stimulus or the initiation of a motor response 
(e.g., ERPs and ERFs). By contrast, frequency domain 
analyses are typically used to quantify recurrent phenom-
ena, referred to as brain rhythms or oscillations. Although 
many definitions of these terms exist, both “brain oscilla-
tions” and “brain rhythms” are most frequently used to 
denote electrophysiological patterns which recur more 
or less regularly (i.e., they repeat at least several times). 
However, as we will see later, nonrecurrent (or transient) 
phenomena are also represented in the spectra obtained 
with frequency domain analyses. Thus, spectral analyses 
represent a widely employed approach for quantifying 
not just brain oscillations but also transient or other non-
oscillatory phenomena (e.g., Harper et al., 2014).

One widely used taxonomy of the brain’s oscilla-
tory activity is the classification introduced by Robert 
Galambos  (1992). Galambos distinguished (i) sponta-
neous oscillations, which are not related to external 
stimuli, (ii) evoked oscillations, which are elicited and 
precisely time-locked to the onset of an external stimu-
lus, (iii) emitted oscillations, which are time-locked to a 
stimulus that was expected but then did not occur, and (iv) 
induced oscillations, which are prompted by a stimulus 
but are not time- and phase-locked to its onset. Figure 3 
illustrates these concepts, respectively.

A further classification used in the literature is based 
on the separation between intrinsic oscillations, or 
the emergent dynamics of the brain itself, versus driven 
oscillations, which occur in response to periodic stim-
ulation, such as a response to regularly flickering light 
or to an amplitude-modulated tone (Norcia et al.,  2015; 
Picton et al., 2003). Multiple taxonomies are in use, and 
a substantial body of research has suggested that distinc-
tions among different types of oscillations, as well as be-
tween oscillations and non-oscillations, are graded rather 
than categorical in nature (Moratti et al., 2007; Truccolo 
et al., 2002). Thus, authors may prefer to abstain from tax-
onomic labels (e.g., “evoked”) and instead quantitatively 
characterize the oscillatory properties of interest based on 
their similarity or the degree of phase locking across tri-
als (Aviyente et al., 2011; Eidelman-Rothman et al., 2019), 
using methods described in Sections 3.3 and 3.4. Table 1 
provides an overview of key definitions and concepts re-
lated to spectral analyses, used in this document.

F I G U R E  2   Illustration of different aspects of oscillatory 
activity. Relative to a 3 Hz sine wave that completes three cycles in 
each second (blue line), the orange dashed line differs in terms of 
(a) frequency; (b) power; (c) phase
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1.2  |  Conceptual foundations: What is 
measured in frequency domain analyses?

Time domain (e.g., ERPs and ERFs), frequency domain, 
and time-frequency analyses reflect different ways of rep-
resenting or summarizing the same underlying neural 
time series. Averaging in the time domain (commonly 
used to derive ERP waveforms) is designed to quan-
tify the central tendency of the observed voltage or field 
strength values relative to an anchoring event. Thus, in 
time domain averaging, the variability around this most 
representative time course is considered a form of error, 
or noise. When averaged waveforms are computed on a 
sufficient number of trials, neural phenomena that share 
a common time course remain visible. These signals are 
often referred to as phase-locked and time-locked to the 
event, because they reflect the central tendency (i.e., the 
mean) of the time course that unfolds in each trial, rela-
tive to the anchoring event. They can be measured at the 
signal’s native sampling rate.

By contrast, frequency domain analyses are designed 
to decompose the variance (or, more precisely, the sum-
of-squares) of the neural time series. Thus, temporal fluc-
tuations of voltage or magnetic fields in a given recording 
epoch are not considered as noise but are quantified 
across a range of frequencies. In this decomposition, any 
source of variance of the time series is represented 
in the resulting frequency spectrum. Thus, the power 
spectrum based on frequency decomposition methods in-
cludes both transient (non-periodic) and oscillatory 
activities that occur during the time interval of interest. 
Because time information (i.e., a temporal integration 
window) is used to estimate variance, the temporal 

precision of the resulting variable is lower than that of 
time domain analyses, such as ERPs. This property of fre-
quency domain and time-frequency domain analyses will 
be discussed in Sections 1.3 and 2.3.

Importantly, the power assigned to each frequency 
cannot assume negative values and will therefore not 
cancel out, even when averaging across multiple power 
spectra from different epochs. Consequently, the average 
power spectrum over epochs will reflect both oscillatory 
and transient activity. Transient activities in response, or 
in preparation, to unidentified internal or external events 
coexist with oscillatory phenomena. Their wavelengths 
are likely to vary, primarily reflecting the wide variety of 
underlying generation mechanisms. When researchers 
are interested in focusing on oscillatory activity, they may 
consider the contribution of non-oscillatory activity to 
the power spectrum as “noise” because it extends across a 
wide set of frequencies (Barry & Blasio, 2021; Donoghue 
et al., 2020). Techniques for addressing this problem are 
discussed in Section 3.1.

Two major types of broadband noise have been iden-
tified. The first is noise that displays no dominant fre-
quency, reflecting factors such as stochastic phenomena 
from outside the brain, but also noise intrinsic to the re-
cording and digitization of brain signals, such as the ap-
proximations made during analog-to-digital conversion 
(e.g., Oken, 1986). The spectrum of this type of noise is 
uniform, and is referred to as “white noise” (Barry & 
Blasio, 2021).

By contrast, nonperiodic brain signals, like most bi-
ological systems (Szendro et al.,  2001), tend to show a 
stronger relative contribution of lower-frequency ac-
tivity than of higher-frequency activity to the spectrum 

F I G U R E  3   Example waveforms 
illustrating Galambos’s taxonomy. Evoked 
oscillations (a) across trials occur in a 
phase-locked and time-locked manner 
response to a stimulus, whereas induced 
oscillations (b) are neither time nor 
phase-locked to a stimulus onset. Emitted 
oscillations (c) are similar to evoked, 
but occur in trials where a stimulus was 
expected but did not occur. Spontaneous 
oscillations (d) occur in continuous 
recordings and are not driven by or 
systematically linked to anchoring events
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T A B L E  1   Key terms and definitions

Term Definition

Aliasing The misrepresentation of frequencies that is not appropriately captured by the digital sampling. For 
example, frequencies above the Nyquist frequency (see below), if not removed prior to digitization of 
the neural signal, will appear as spurious lower-frequency phenomena in the resulting spectrum

Autoregressive (AR) model This approach reconstructs a time series into frequency components by means of linearly regressing past 
time points onto future time points. The beta values of this regression serve as estimates of power 
at different frequencies. AR modeling is often used for spectral analysis and in Granger causality 
analyses

Basis functions Sets of models used for the decomposition of a time series into the frequency domain. For example, sine 
and cosine functions serve as the basis functions in Fourier analysis

Complex number A numerical representation in which a value consists of two components, a real and an imaginary part. 
Often used to represent the frequency domain components (see Fourier components) corresponding 
to sine and cosine basis functions, respectively

Cross-frequency coupling 
(CFC)

A term for analyses that examine the interactions between oscillatory processes at different frequencies, 
such as the systematic co-variation of power changes at one frequency (e.g., 40 Hz) with changes in 
phase at another frequency (e.g., 6 Hz). Other examples include covariation of power changes at two 
different frequencies, and interactions between the phase at two different frequencies

Edge artifacts Distortions in spectral representations caused by variations in values at the beginning and/or end of the 
empirical input time series

Event-related spectral 
perturbations (ERSPs)

A term used to denote power changes in the evolutionary spectrum (i.e., changes in the time-frequency 
domain). A Fourier spectrogram or wavelet analysis may be used to quantify ERSPs

Fourier analysis A method for decomposing time series into frequency-specific components, modeled by sine and cosine 
waves. The result is a complex spectrum in which each frequency is represented by a pair of real 
and imaginary numbers, joined together as one complex number per frequency. From these Fourier 
components, power and phase may be extracted

Fourier components The weights of the sine and cosine basis functions in a Fourier analysis, typically referred to as imaginary 
(i.e., sine) and real (i.e., cosine) components

Fourier uncertainty 
principle

The notion that the detail contained in a spectrum varies inversely as a function of the duration of the 
input time domain signal. As such, longer time domain segments result in greater resolution in the 
frequency domain

Frequency domain A representation in which properties of a signal are analyzed as a function of frequency, instead of time or 
space. Typically, this is shown as a figure with frequency in Hertz on the x axis

Hertz (Hz) A unit for the temporal rate (i.e., frequency) of repeating events, measured in full cycles per second. For 
example, an oscillation that repeats five times per second has a frequency of 5 Hz

Nyquist frequency The frequency that is ½ the rate at which a time series was digitized (sampled). For example, when 
sampling at 500 Hz, the Nyquist frequency is 250 Hz. The Nyquist frequency defines the width of the 
range of contiguous frequencies that can be represented without aliasing

Phase-locking A measure of the similarity of phase values, or phase differences, across observations such as repeated 
trials, channels, or time windows

Pink, or 1/f, noise A collection of nonperiodic processes in which power at lower frequencies is relatively larger in 
amplitude, resulting in a spectrum that takes the shape of an exponential function f(x) = x−1

Power spectrum A frequency domain representation in which the magnitude (e.g., y axis) of activity present in a series of 
data points is calculated for different frequencies (e.g., x axis)

Sample or sampling rate The temporal rate (i.e., frequency) at which continuous, analog data are converted to numerical values to 
be digitally stored

Spectrogram An analysis that quantifies changes in spectral properties as they develop over time. Sometimes called 
the evolutionary spectrum, spectrogram analyses are often associated with shifting Fourier windows 
across a time series and measuring the spectrum during subsequent time points

Stationarity Often referred to as covariance stationarity, it indicates that the low-order statistical properties of the 
frequency domain signal (e.g., mean power and phase) do not change during the interval considered 
for the analysis

(Continues)
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(He, 2014). As a consequence, scalp-recorded broadband 
noise often shows an inverse relationship between power 
and frequency. This second form of noise is often labeled 
“pink noise”, 1/f noise, or aperiodic activity (Donoghue 
et al., 2020; Freeman & Zhai, 2009; Lin et al., 2016), mean-
ing that its power declines with increasing frequency, fol-
lowing a power function. The term aperiodic is used to 
indicate that pink noise is not rhythmic, that is, the under-
lying signal does not repeat itself in a regular fashion. In 
the published literature, pink noise is typically considered 
physiological in origin and is ubiquitous, although varying 
in intensity. Broadband activity may be more pronounced 
at some frequencies than others, reflecting non-oscillatory 
contributions at different wavelengths. This may create a 
complex spectral shape for the “pink noise”, which may 
be best described by a power function with an exponent 
other than −1. Figure  4 shows an example of a power 
spectrum derived from 80 trials of EEG in a young healthy 
participant, along with the best-fitting pink noise defined 
by a 1.5/f function.

Given these nonlinear properties of the non-oscillatory 
noise, the extent to which a given neural or behavioral 
time series should be regarded as an oscillation has been 
a matter of debate (Donoghue et al.,  2020; Gyurkovics 
et al.,  2021). Recent work has increasingly separated 
“true” near-periodic oscillations at a specific temporal 
frequency, or in a frequency band, from aperiodic fluc-
tuations in the signal such as pink noise or white noise 
(Donoghue et al.,  2020; He,  2014; Hughes et al.,  2012). 
As oscillatory activity is expected to occur at regular 

intervals, while aperiodic activity is supposed to occur 
at relatively random intervals, it has also been proposed 
to quantify the rhythmicity of a signal by the degree of 
how the phase spectrum is preserved over time (Fransen 
et al., 2015). Another widely used criterion for identifying 

Term Definition

Temporal integration 
window

The time window over which specific values of power and phase for a particular frequency are computed. 
Since only one value of power and phase is computed for each temporal integration window, it is 
linked with the Fourier uncertainty principle and the concept of stationarity

Time domain Representation of a signal as a function of time. For example, event-related potentials (i.e., ERPs), event-
related fields (i.e., ERFs), and raw EEG are time domain data

Time-frequency plot A graphical representation illustrating changes in spectral properties as they develop over time (see 
spectrogram). Graphically, time and frequency are typically shown as two orthogonal (e.g., x and y) 
axes, and the spectral feature of interest (e.g., power) is shown on a z axis in three-dimensional plots, 
or color coded in two-dimensional plots

Time series A sequence of temporal observations ordered along a time axis

Wavelength The inverse of frequency. This metric describes the duration of a full cycle of an oscillation

Wavelet transform A method for extracting time and frequency information from time domain signals

White noise Nonperiodic signals in which the spectral energy is evenly distributed across frequencies, often associated 
with stochastic, nonbiological processes

Zero-padding A technique for increasing the length (i.e., duration) of a time domain signal by adding zeros at the 
beginning and/or end. It is often used with the intention to heighten the frequency resolution 
of a spectrum (see Fourier uncertainty principle) by adding time points without adding spectral 
information

Note: This table summarizes definitions for some of the key terms, with a focus on application in human electrophysiology.

T A B L E  1   (Continued)

F I G U R E  4   Spectral analysis of electrophysiological data. Blue 
line: Example power spectrum derived from 80 segments of resting 
EEG through discrete Fourier transform, derived from sensor oz 
in one participant. Orange line: Best-fitting 1/f function (i.e., 1.5/f) 
illustrating the pink noise portion of the power spectrum. Note the 
deviation from 1/f at ~10 Hz, consistent with occipital alpha-band 
activity
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“true” oscillations considers the degree of power concen-
trated within a specific frequency range relative to power 
in other frequency ranges (Keil et al., 2014), as shown for 
the alpha-band oscillation in Figure  4. In the final sec-
tion of the introduction to this document, we discuss the 
computational foundations of algorithms used to quantify 
spectral phenomena.

1.3  |  Basic computational principles of 
frequency domain analyses

A comprehensive introduction of the mathematical con-
cepts related to frequency domain analyses is outside the 
scope of this report, and readers are referred to widely 
used textbooks and tutorials on the topic (Cohen, 2014; 
Gable et al.,  2022; Handy,  2004). To facilitate reading, 
and to highlight concepts of relevance for communicat-
ing psychophysiological research, this section gives a 
short introduction to the fundamental principles that 
are shared between most of the analytical techniques 
discussed in this paper, using the Fourier transforma-
tion as an example. As mentioned above, spectral power 
at a particular frequency reflects the amount of variance 
(fluctuation around the mean) that is accounted for by 
the corresponding basis function integrated across the 
time interval entering the analysis. Because the power 
spectrum represents an integral over time, the same 
total power for a given frequency can be obtained by 
a single large deflection or by a series of smaller regu-
larly occurring oscillations covering the entire analysis 
interval. Thus, time information is lost and power at a 
particular frequency cannot, per se, be interpreted as 
demonstrating the existence of oscillatory activity at 
that frequency (see e.g., Donoghue et al.,  2022). Other 
techniques are needed to establish the presence of an os-
cillation and examples of these techniques are discussed 
in Section 3.1.

1.3.1  |  Power, phase, and complex spectra

To be valid, the decomposition of time series into basis 
function weights must take into account the relative 
timing, or phase, of the oscillatory waveforms in the 
basis functions relative to the observed time series (see 
Figure  2). To meet this requirement, frequency domain 
analyses include not just one, but two basis functions for 
each frequency, so that their joint information covers all 
possible phase differences. Typically, orthogonal pairs of 
basis functions are used, such as the sine and cosine func-
tions, or other function pairs in which one is a derivative 
of the other. Note that in applying this analytic approach 

one is not assuming that there actually were these basis 
functions operating in the biological system being 
analyzed—only that this approach can represent the ac-
tual biological system with high fidelity. When using basis 
function pairs in which each function has a mean of 0, and 
their cross-product is also 0, the combined sum-of-squares 
reflects the power of the empirical time series at that par-
ticular frequency. Because of these functional definitions, 
spectral data are readily illustrated in a two-dimensional 
Cartesian space, spanned by the two orthogonal basis 
functions (Figure 5).

In general, the value on each axis represents the inde-
pendent contribution of each of the two basis functions 
to the observed waveform during the interval that is ex-
amined. The joint ability of the two basis waveforms to 
account for the temporal variance in the time series is ex-
pressed by the length of the vector joining the point iden-
tified in the Cartesian space with the origin. This length 
is called amplitude (and its square value is the power). 
Note that shifts in the timing of the observed waveform 
relative to the two basis functions will change their rela-
tive contributions to the observed waveform, but will not 
change their cumulative contribution, in a manner analo-
gous to an orthogonal rotation in two-dimensional space. 
Hence, these graphical representations illustrate another 
fundamental aspect of spectral analysis: orthogonal basis 
function pairs also allow for the computation of the phase 
spectrum—containing the phase difference between the 
empirical signal and the best-fitting basis functions. The 
phase at a given frequency can be computed as the angle 
between the basis functions: The tangent of that angle is 
equal to the ratio between the cross-products of the basis 
functions (e.g., the sine and cosine at 10 Hz) with the ob-
served time series. The arctangent function is used to find 
the angle (see Figure 5).

Mathematically, the pair of orthogonal functions is 
often represented as two components in a so-called com-
plex number, in which the two paired components, called 
the real and imaginary part, are combined. In Fourier 
analysis, by convention, the sinusoidal contribution is re-
flected in the imaginary part and the cosinusoidal contri-
bution in the real part of the complex number. Together, 
the two orthogonal components span the Cartesian space 
shown in Figure  5. Thus, this representation is called 
Fourier component representation, or trigonomic rep-
resentation. However, in the majority of analysis suites 
and packages available to EEG/MEG researchers, Euler’s 
equation is used to describe the complex spectrum in 
terms of an exponential equation. This equation states 
that the component formulation shown in Figure 5, can 
be rewritten for any real number x as:

(1.1)cos (x) + i∗ sin (x) = eix
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 with i being the imaginary component (the square root of 
−1) and e the base of the natural logarithm. This is conve-
nient because it fully describes the complex spectrum, but 
it does so using intuitive terms of power and phase, with 
the real part in the right side of Equation (1.1) representing 
power and the imaginary part representing phase. In both 
cases, the published literature refers to the “imaginary part” 
and “real part”, but depending on whether the component 
formulation or Euler’s formula is used, this term refers to 

different aspects of the spectrum. Replication and commu-
nication are aided by clearly stating which formulation is 
used in a given algorithm or published work.

1.3.2  |  The Fourier spectrum and its 
frequency resolution

As noted above, the power and phase spectra of a digi-
tally sampled time series contain the complete informa-
tion available in the original time series, if full spectra 
are calculated. This means that a full spectrum of phase 
and power values can be converted back into its original 
time series. A full spectrum contains the same number of 
points as the decomposed time series, but usually only the 
first half of the Fourier coefficients are shown because the 
second half contains the same information. This is a result 
of the mathematical properties of the Fourier transform. 
As already noted, this decomposition method uses basis 
functions for each frequency that are orthogonal, with 
their cross-product being equal to 0. For infinitely repeat-
ing functions, such as sinusoidal and cosinusoidal waves, 
both assumptions are often not met when the basis func-
tion time series are truncated without completing a full 
cycle. As a consequence, only certain sets of frequencies 
can be analyzed in this fashion—frequencies that are in-
teger multiples of the fundamental frequency of the time 
series, calculated as the inverse of its duration. Thus, for 
an analysis interval of length T seconds, the frequencies 
in the spectrum will be 1/T Hz, 2/T Hz, 3/T Hz, etc. The 
step size between these frequencies is called the frequency 
resolution of the spectrum. That is, the resolution of the 
output in the frequency domain is a function of the du-
ration of the input in the time series. Therefore, input-
ting longer time segments produces higher resolution in 
the frequency domain. For example, a Fourier spectrum 
based on 2000 ms of EEG data will contain power values 
at intervals spaced at 0.5 Hz (1/2 s), and a spectrum based 
on 5000-ms segments will have steps spaced at 0.2  Hz 
(1/5 s). Section 2.3 provides a more detailed and practical 
discussion of this topic.

In principle, the choice of the basis functions is arbi-
trary, in that a variety of basis function pairs can represent 
signals. The use of sine and cosine as the basis functions is 
most common, but other basis functions are in wide use. 
If the full range of frequency spectra in a data set is to 
be built, it is important that the basic temporal shape of 
the basis functions can be scaled for all sets of frequen-
cies that are going to be used. This potential limitation 
should be considered when analyzing high frequencies, in 
which the wavelength (and therefore the number of sam-
pling points) available to reproduce the basic shape of the 
basis function may be limited. Therefore, it is important 

F I G U R E  5   Illustration of the polar representation of a time 
series in the frequency domain. Three example waveforms are 
decomposed into real (cosine basis function) and imaginary (sine 
basis function) parts, and plotted as a vector in a cartesian space, 
where the length of the vector represents the amplitude at a given 
frequency (i.e., the joint contribution of both basis functions to the 
time series) and the angle represents the phase of the signal (i.e., 
the temporal position relative to the basis functions)
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to identify frequencies of interest, particularly the highest 
frequency, and the time segments needed to analyze these 
frequencies. The vast majority of available algorithms for 
spectral analysis rely on sine and cosine waves and their 
variants.

Finally, neural time series used in the research context 
are digitized sequences of discrete samples from the con-
tinuous voltage or field data, and as such are subject to 
the Nyquist sampling theorem. This theorem implies 
that the spectrum of a time series may only correctly re-
flect frequencies from 0 Hz up until half of the sampling 
rate. This rate, ½ of the sampling or digitization frequency 
used during recording, is also referred to as the Nyquist 
frequency and represents an upper boundary for the fre-
quency domain representation of a time series. For exam-
ple, a sampling rate of 500 Hz would result in a Nyquist 
frequency of 250  Hz, with this frequency serving as the 
upper boundary in the frequency domain. To prevent mis-
representation of signals in the frequency spectrum, it is 
mandatory to filter out any signals exceeding the Nyquist 
frequency prior to analog-to-digital conversion. In the ab-
sence of robust hardware filtering at or below the Nyquist 
frequency, these under-sampled signals will result in so-
called aliasing, the misrepresentation of above Nyquist 
frequencies as lower-frequency phenomena. A detailed 
discussion and tutorial of digital sampling, filtering, and 
aliasing is provided by Cook and Miller (1992).

2   |   STUDY PLANNING AND DATA 
PREPROCESSING STEPS

Planning a study for spectral analyses involves decisions 
regarding a set of general topics, shared across many dif-
ferent analytical approaches. These include the concep-
tualization and definition of the dependent variables, the 
experimental design, and the analysis interval, as well as 
decisions regarding the settings for recording and preproc-
essing. In this section, we discuss several of these issues 
and suggest ways in which authors may address them.

2.1  |  Conceptualizing spectral 
representations of neural data

As described above, any spectral representation of neural 
data may reflect unknown proportions of broadband activ-
ity and frequency-specific oscillatory phenomena which, 
while more narrow-band in nature, may also extend over 
a range of frequencies. Thus, an observed change in the 
power spectrum may reflect a change in activity in a spe-
cific frequency range or may reflect a change in the offset 
and exponent of the 1/f pink noise, or a combination of 

both. Several methods exist to identify these different con-
tributions (e.g., Donoghue et al., 2020; He, 2014; Hughes 
et al., 2012). At the conceptual level, these methods rest on 
different assumptions regarding how the frequency spec-
trum is generated. There are two broad conceptualiza-
tions, and it is helpful to consider them explicitly. First, a 
power spectrum may be considered as resulting from a set 
of non-overlapping narrowband activities plus stochastic 
error (narrowband model, see Model 1 below). In contrast, 
the second conceptualization proposes that a power spec-
trum may reflect the sum of a set of narrowband activities 
added to a background formed by broadband phenomena 
(narrowband+broadband model, see Models 2a and 2b 
below) plus stochastic error. Formally, these two models 
correspond to the following equations describing activity 
at a frequency f:

Although both models are mathematically viable, the model 
chosen to represent the power spectrum leads to fundamen-
tal differences in the estimation of the parameters entered in 
the statistical analyses and is therefore critical for the prac-
tical and theoretical inferences that are made. Traditionally, 
analyses in the frequency domain were conducted implic-
itly assuming the narrowband model (e.g., Lehmann et 
al., 1987). However, it should be noted that some contribu-
tion of non-oscillatory broadband (1/f) phenomena is likely 
present in most data sets and, therefore, Model 2 is typically 
more realistic. There are several different methods for con-
ducting data analyses under the narrowband + broadband 
model that are discussed later in this document.

Another conceptual distinction refers to the extent to 
which differences in spectral power are thought to reflect 
the multiplicative modulation of narrowband activity, 
whereby a frequency band only reflects a single type of 
activity that can change over time, versus additive mech-
anisms, in which changes in power reflect the summation 
of different types of activity. Considering multiplicative 
versus additive mechanisms is important because this 
consideration impact how the spectrum is quantified: The 
narrowband model (see Model 1) readily accommodates 
both multiplicative and additive mechanisms, since only 
one parameter, the intensity of the narrowband effect, is 
estimated for each frequency. Many traditional studies in 
so-called quantitative EEG research adopt this perspective 

For the narrowbandmodel:

Model 1: Power (f ) =Narrowband (f ) +error

For the narrowband+broadband model:

Model 2a: Power (f ) =Narrowband (f ) +Broadband (f ) +error

Or more specifically:

Model 2b: Power (f ) =Narrowband (f ) +1∕f (f ) +error
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(Nuwer,  1997; Pivik et al.,  1993). Therefore, nonlinear 
transformations of the observed power, such as log or deci-
bel transformations, which are consistent with the multi-
plicative model, are mathematically appropriate. However, 
if the narrowband+broadband model is adopted, two pa-
rameters exist for each frequency: the respective contri-
butions of narrowband and of broadband components to 
the observed power. Therefore, nonlinear transformations 
should not be applied to the raw observed power before 
separating the contributions due to each component, be-
cause this would lead to incorrect estimation of these two 
parameters. For example, one of the parameters could be 
systematically over- or under-estimated depending on the 
value of the other (Gyurkovics et al., 2021). Several pro-
cedures are available to achieve this separation if one is 
interested in applying nonlinear transformations under 
the narrowband+broadband model choice (Clements 
et al.,  2021; Donoghue et al.,  2020; He,  2014; Hughes 
et al., 2012).

In summary, when quantifying frequency domain 
data, results may be strongly influenced by the underly-
ing model that guides the interpretation process. When 
oscillatory activity is the focus of analysis in the context 
of the narrowband+broadband model, it is critical to take 
into account concurrent non-oscillatory activity, such as 
1/f noise. Importantly, the model adopted, whether explic-
itly or implicitly, affects the outcome and interpretation of 
the data, such as when differences in spectral power are 
interpreted as only due to narrowband activity or when 
using nonlinear transformations. It is therefore recom-
mended that the conceptualization of the spectral 
composition be made explicit and justified when 
making inferences from frequency domain repre-
sentations in articles and reports.

2.2  |  Defining and selecting 
frequency bands

Paralleling the plethora of methods available for extract-
ing dependent variables from time domain data, such as 
ERPs, many different approaches are used for measuring 
frequency domain or time-frequency phenomena. For 
decades, researchers have relied on averaging spectral 
power across frequencies within so-called canonical fre-
quency bands to obtain indices thought to relate to certain 
behavioral and cognitive processes. Traditional demarca-
tions of canonical frequency bands have typically defined 
the delta (<3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta 
(13–30  Hz), and gamma (>30  Hz) bands. As discussed 
in Section 2.1, raw band power derived from a spectrum 
will reflect a mixture of oscillatory and non-oscillatory 
processes. It is thus recommended to consider these two 

sources of power and specify the assumptions regarding 
contributing processes.

In addition, the literature is increasingly converging 
on showing that many canonical frequency bands listed 
in textbooks and recent guideline articles are poorly rep-
licable across different populations, and across various 
tasks and paradigms. For example, the frequency of the 
occipital alpha signal (around 10 Hz in young adults, see 
Figure 4) changes substantially over the lifespan (Hashemi 
et al., 2016; Polich, 1997). Furthermore, experimental and 
individual difference effects that have been traditionally 
linked to specific canonical frequency bands have been 
commonly observed at frequencies outside these canonical 
bands (Newson & Thiagarajan, 2019; Shapiro et al., 2017). 
As such, forming and testing hypotheses regarding effects 
in canonical bands without establishing the specificity 
and sensitivity of the dependent variable may yield mis-
leading or ungeneralizable results. With the advent of 
advanced statistical techniques (see Section 4.1), it is pos-
sible to apply mass univariate techniques with appropriate 
corrections for multiple comparisons to examine multiple 
frequencies (Groppe et al.,  2011; Maris,  2012), aiding in 
linking specific frequency domain phenomena to the ma-
nipulation or comparison of interest.

2.3  |  The trade-off between temporal 
resolution and frequency resolution

As discussed in Section  1.3, quantifying the power and 
phase of a time series in the frequency domain requires in-
tegrating information across a period of time. Frequency 
domain analyses are subject to the Fourier uncertainty 
principle, which holds that the number of available fre-
quency bins (e.g., ticks on the x axis, maximally extending 
between 0 Hz and the Nyquist frequency) increases with 
the temporal duration of the time segment used for the 
spectral analysis (temporal integration window). Thus, 
spectra computed from longer time series have greater fre-
quency detail than do spectra computed from shorter time 
series. As a result, higher frequency resolution comes at 
the cost of lower time resolution. Consideration of this 
tradeoff is particularly important because most EEG/MEG 
signals are not stationary for long. This trade-off between 
temporal and frequency specificity is inherent in the ma-
jority of methods discussed in this document.

The Fourier uncertainty principle impacts study de-
signs in which a researcher may wish to include longer 
versus shorter inter-trial intervals, or consider shorter ver-
sus longer trial durations to ensure sensitivity to a time 
range of interest, while also ensuring robust estimation 
of the spectrum. Depending on the aims of the study, re-
searchers may want to emphasize time resolution (e.g., 
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using shorter analysis intervals), frequency resolution 
(e.g., using longer analysis intervals), or select a specific 
trade-off between them, accomplished by methods such 
as wavelet transforms or multitaper analyses. For example, 
researchers interested in short bursts of high-frequency 
broadband signals at frequencies above 40  Hz may not 
be concerned with specific frequencies, but may wish to 
characterize the timing of these neural events in sufficient 
detail. By contrast, researchers interested in changes in 
alpha peak frequency over the life span may wish to em-
phasize frequency resolution, by ensuring sufficient dura-
tion of the analytical intervals examined. Many methods 
for time-frequency analysis, as discussed in Section  3.2 
below, also involve trade-offs between time and frequency 
resolution for different frequency ranges (Tallon-Baudry 
& Bertrand,  1999). To enable reproduction of these al-
gorithms within and across labs, it is recommended that 
authors report the duration of the analytical time interval 
used for the frequency domain analyses. It is also recom-
mended that they report the resulting time and frequency 
resolution of the spectrum or of the time-frequency repre-
sentations at the frequencies of interest.

Many algorithms and widely used pipelines include 
an option to increase the frequency detail of a spectral 
representation by adding zeros to the time series en-
tered in the analysis. This practice is referred to as zero-
padding. Zero-padding may be helpful in situations 
where a given frequency resolution is desirable but can-
not be attained with the interval duration available from 
the time-segmented data. Such situations occur in cases 
where researchers wish to quantify the power at a driv-
ing frequency evoked by oscillatory stimulation of a sen-
sory system. For example, researchers conducting a study 
with auditory steady-state responses may be interested in 
the 41.6  Hz auditory response to 1-s sound stimuli that 
are amplitude-modulated at that exact frequency. A fre-
quency analysis of the 1-s stimulation intervals would re-
sult in a spectrum with 1 Hz resolution, failing to include 
a frequency bin for the frequency of interest, 41.6  Hz. 
This is because frequency bins would increase in constant 
steps of 1 Hz, eventually yielding bins of 41 Hz and 42 Hz, 
which do not fully capture the 41.6 Hz frequency of in-
terest. Thus, the researchers may opt to add zeros at the 
beginning and end of each epoch to be analyzed, to attain 
the desired frequency resolution. In this case, they may 
add 750 ms of zeros at the beginning and end of each 1-s 
data segment. The resulting epoch duration of 2.5 s results 
in a frequency resolution of 1/2.5  =  0.4  Hz. Starting at 
0 Hz and extending in even steps of 0.4 Hz, the spectrum 
will now include a frequency bin corresponding to a basis 
function at 41.6  Hz, allowing for clearer quantification 
of the auditory steady-state response. It should be noted, 
however, that zero-padding does not increase the true 

underlying frequency resolution, as no new information 
is added. Instead, it is a form of interpolation using the ex-
isting data. In cases where zero-padding is used, it should 
be fully reported in the manuscript, including the number 
and location of the added zeros (i.e., before, after, or before 
and after) relative to the empirical time series.

2.4  |  Stationarity of the signal

Stationarity, often conceptualized as covariance station-
arity, indicates that low-order statistical properties of 
the time domain signal (e.g., the mean and variance; in 
the case of sinusoidal data, this includes frequency, am-
plitude, and phase) do not change over time. This is rel-
evant because most spectral transformations, such as the 
Fourier transform, veridically represent all aspects of the 
time series in the complex spectrum. These aspects in-
clude transient and nonstationary signals in addition to 
oscillatory processes, which are more likely to be station-
ary. Thus, interpretation of a given frequency spectrum 
partly depends on the extent to which the underlying pro-
cesses were stationary and extended throughout the time 
interval entering the analysis.

Stationarity is also an assumption of many non-Fourier 
algorithms for spectral analysis, such as half-wave analysis 
and autoregression (see Section 3.1.4), both of which will 
yield misleading results if conducted on nonstationary 
signals. One useful approach to addressing this problem is 
to quantify stationarity, using suitable statistical tests such 
as the augmented Dickey-Fuller test (Elliott et al., 1996) 
or the Kwaitkowski Phillips Schmidt Shin test (KPSS; 
Kwaitkowski et al., 1992). It is recommended that authors 
detail the extent to which their data were stationary and 
the tests used to confirm that they were so, along with any 
transforms, such as differentiating or filtering, aimed to 
achieve stationarity.

2.5  |  Artifacts and artifact control

Neurophysiological time series are prone to a variety of 
artifacts, defined as signals that do not reflect the neural 
processes targeted by the analysis. The detection, con-
trol, and correction of these artifacts is a rich topic and 
discussed elsewhere more broadly, including recommen-
dations for the implementation of these methods (Keil 
et al., 2014). This section is focused on aspects of artifact 
detection and control that are particularly pertinent for 
studies using frequency domain and time-frequency do-
main techniques.

As discussed in Sections  1.2, 1.3, and 2.1, spectral 
representations contain all aspects of the original time 
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series, including non-oscillatory, transient events such 
as ERPs or broadband phenomena (e.g., blinks), but 
also oscillatory events that may have non-cerebral or-
igin such as electromyographic (EMG) signals from 
facial and bodily muscles. As such, spectral represen-
tations will also fully reflect nonphysiological arti-
facts such as voltage jumps caused by loose electrodes, 
50/60 Hz line noise, and rapid jumps in voltage created 
by movement of the participant or equipment. Thus, 
carefully examining the time series and the spectrum 
before and after artifact rejection and artifact control is 
recommended to ensure the validity of the dependent 
variable of interest. In addition to visual inspection and 
semi-automatic artifact control, automated pipelines 
are increasingly used to accomplish these steps. In all 
these cases the pipeline usage, settings, and parameters 
should be fully documented in a published manuscript. 
The following paragraphs describe major physiological 
artifacts that may threaten the validity of frequency do-
main analyses, along with approaches for controlling 
them. Figure  6 illustrates how retaining epochs with 
common artifacts affects spectral and time-frequency 
analyses in a data set with 20 artifact-free trials, shown 
in Figure 6a.

2.5.1  |  Ocular artifacts

A variety of artifacts arise from eye-related activity. These 
include eye movements, in which the corneo-retinal di-
pole, extending between the negatively charged retina 
and the positively charged cornea, creates changes in 
transient voltage and field gradients across the head as 
the eyes move. Eye blinks (i.e., complete or partial eye 
lid closures) cause similar, abrupt changes in the elec-
tromagnetic field, maximal near frontal sensors (see 
Figure  6b). Such sharp, transient changes in the time 
series tend to be represented as strong broadband sig-
nals in spectral analyses in that they extend across a 
wide range of frequencies and may thus be mistaken as 
heightened power in a specific band (Figure  6b, right 
panel), especially if broadband contributions are not 
separately considered in the analysis (see Section 2.1). 
Another source of artifact includes microsaccades, also 
referred to as fixational saccades, which are associ-
ated with spike potentials in neural time series (Plöchl 
et al.,  2012). The voltage changes caused by microsac-
cades also tend to appear as broadband signals in spec-
tral analyses, often in the higher frequency ranges, and 
thus may be misinterpreted in a fashion similar to that 

F I G U R E  6   Typical artifacts affecting frequency domain and time-frequency domain analyses of neural time series data. Left column 
shows one of the 20 EEG trials, segmented relative to the onset of a visual working memory task, and either free of artifact (a), or affected by 
three frequent artifact types (b: Sharp transient, c: Drift, d: EMG). The middle column shows the average (across 20 trials) power spectrum 
of the time period between 0 and 6 s, with one trial (left column) affected by different artifact types (red lines) compared to the average of 
20 artifact-free spectra (a, middle panel). The right column shows results of a wavelet transform of the same data, with (b through d) and 
without (a) the contaminated trial included. Note that the presence of one trial with a strong artifact is sufficient for inducing pronounced 
changes in both the frequency domain and time-frequency representation. See text for artifact description
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of transient eye movements. Under certain conditions, 
these ocular artifacts have been shown to greatly af-
fect spectral analyses of neural time series, including 
time-frequency analyses (Yuval-Greenberg et al., 2008). 
EMG signals, arising from ocular muscles, such as the 
musculus orbicularis oculi, may introduce oscillatory 
as well as non-oscillatory artifacts, predominantly at 
frontal sensors. EMG artifacts are discussed in greater 
detail in Section 2.5.4 below. It is recommended that ar-
tifact correction in studies of oscillatory brain activity 
consider the unique challenges discussed above, beyond 
what has been recommended for electromagnetic time 
series analyses more broadly (Keil et al.,  2014; Pernet 
et al.,  2020; Picton et al.,  2000). Specifically, authors 
may wish to report the exact types of ocular artifacts re-
moved from the data, instead of referring just to artifact 
removal more broadly, by including specific information 
on the extent to which blinks, saccades, or oculomotor 
EMG were controlled for and how, respectively. Because 
most ocular artifacts have a characteristic topography, 
visible in most spatial representations, it may be use-
ful to include a topographical illustration that includes 
frontal sensors, allowing readers to assess the presence 
of any residual ocular activity in the signal of interest. 
Finally, it may be necessary to conduct analyses that 
quantify the relationship between the occurrence of a 
given ocular artifact, such as microsaccades, and varia-
tions in the dependent variable, to rule out that the out-
come measure is driven by or confounded with ocular 
artifacts. Many analysis pipelines contain algorithms for 
detecting and controlling ocular artifacts. Their usage, 
parameter settings, and the numbers of affected trials 
and channels should be reported in the manuscript.

2.5.2  |  Cardiac and respiratory artifacts

Cardiac artifacts include the direct interference of voltage 
gradients or magnetic fields generated by the cardiac cycle 
at cranial sensor locations (Sun et al., 2016), as well as ar-
tifacts related to associated cardiovascular (blood flow) 
processes, often referred to as pulse artifacts (Tamburro 
et al., 2019). These two types of cardiac artifacts differ in 
their temporal profile, with vascular artifacts showing a 
slower, smoother time course and electrical artifacts re-
flecting the cardiac cycle, thus including a sharp transient 
deflection corresponding to the R-wave of the electrocar-
diogram. These artifacts may introduce non-cerebral sig-
nals at a variety of frequencies, ranging from below 1 Hz 
to broadband signals introduced by the sharp transient 
caused by the R-wave. The prominence of these artifacts 
can be reduced by the choice of an appropriate recording 
reference (see Keil et al., 2014).

Respiratory activity is likewise associated with two 
types of artifacts. The first (Figure 6c) is related to the slow 
and rhythmic movements of the body, affecting sensor po-
sition relative to the head (MEG) or influencing electrode 
impedance though motion of the head or electrode leads 
(EEG). The second type of artifact linked to respiration 
is produced by more abrupt changes in body position co-
occurring with inhaling and exhaling, again prompting 
changes of head position and/or slight moving of scalp 
sensors, reflected in peaks in the recorded time series.

As discussed in Sections 1.2 and 2.1, both cardiac and 
respiratory artifacts will be represented in spectral analy-
ses and may not be readily identifiable as artifactual after 
being included in the spectrum (see Figure 6c, middle and 
right panels, for an illustration of low-frequency artifacts 
induced by slow drift). Thus, examining the time domain 
signals used for frequency domain analyses is particularly 
important. Researchers may assume that averaging across 
multiple trials may attenuate the contribution of these sig-
nals, as long as artifacts are not systematically related to 
the interval timing used for averaging and that a sufficient 
number of trials is available. Both conditions are often 
not met. For example, heart rate may systematically vary 
across the analytical time segment in studies of emotional 
reactivity or attention, when an attended or alerting stim-
ulus is presented, and in studies where the experimental 
paradigm does not involve trial averaging, such as in stud-
ies of resting states or sleep. Several methods for remov-
ing cardiac and respiratory artifacts exist, some of which 
rely on multivariate analysis of the data through principal 
component analysis (PCA) or independent component 
analysis (ICA). To facilitate replication, these methods 
should be fully described with appropriate citations, and 
user settings and interactive choices reported, including 
the component selection criteria, number of components 
selected for each participant, and algorithm used, if pos-
sible, with a reference to the original manuscript guiding 
the choice.

2.5.3  |  Electrodermal (sweating) artifacts

Artifacts produced by sweat gland activity share several 
properties with cardiac and respiratory artifacts in that the 
associated changes in impedance prompt slow changes, 
typically in the range well below 1  Hz (see Figure  6c). 
Paralleling cardiac and respiratory artifacts, perspiration-
related artifacts may also be misinterpreted as slow EEG 
activity and may be identified and controlled for with the 
same methods discussed in Section  2.5.2. In addition to 
these slow artifacts, in EEG recordings the influx of sweat 
may also cause rapid changes in electrode impedance as 
well as short-circuiting sensors, often reflected in brief 
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voltage spikes (Kappenman & Luck, 2010). This has been 
a concern particularly when using dry electrode systems 
in which the humidity of the skin serves as the electrolyte 
facilitating conductance. The identification and control of 
such sweat spikes in voltage time series parallels those of 
other rapid transient artifacts, including faulty electrodes, 
which are identifiable by their specific topography. They 
are typically controlled by removal or interpolation of af-
fected channels, or by removal of the affected time segment. 
Experimenters should work to control the environmental 
conditions to minimize these artifacts when possible.

2.5.4  |  Non-ocular (facial, neck) EMG and 
other motor artifacts

Movement of the neck, extremities, and facial muscles, 
as well as talking, shivering, sniffling, hiccupping, and 
glossokinetic (tongue) movements introduce artifacts in 
EEG and MEG recordings. Some of the EMG phenomena 
caused by these processes are oscillatory in nature in that 
they prompt rhythmic field changes at specific frequen-
cies, typically in higher frequencies. As such, these artifacts 
tend to threaten validity, especially for studies focusing on 
higher-frequency oscillations, which may overlap with 
the EMG spectrum, which tends to contain substantial 
power in frequencies above 20 Hz (see Figure 6d, middle 
and right panels). It is recommended that these artifacts 
be identified through their topography, which is expected 
to be at its maximum near the generating muscle groups, 
as well as through inspection of the time series. In addi-
tion, multivariate approaches (e.g., PCA and ICA), as dis-
cussed below in Section 4.1, may be suitable to detect and 
remove variance related to these motor artifacts.

2.6  |  Referencing and spatial 
transformations

A substantial number of EEG and MEG studies aim to 
quantify spatial dependencies, across sensors or across 
brain regions. Often, the overarching goal of these analyses 
is to characterize neural connectivity across brain regions. 
Various algorithms exist to measure spatial dependen-
cies, including the methods described in Section 3.4 below 
(Ding et al.,  2011; Nolte et al.,  2004; Nunez,  1996; Stam 
et al., 2007). Both volume conduction effects (i.e., spreading 
of voltage within the brain and across the scalp) and dipo-
lar fields may lead to spurious positive results, suggesting 
oscillatory interactions among different locations where 
none exist (Nunez et al., 1997). Thus, many of the available 
metrics benefit from—and some require—spatial trans-
formations of EEG and MEG data. For example, measures 

of inter-site dependence (e.g., inter-site phase-locking, 
magnitude-squared coherence) are more readily inter-
pretable if applied to Laplacian or current source density 
(CSD) transformations of EEG data (Nunez et al.,  1997). 
The CSD is based on the second spatial derivative of the 
EEG scalp potential, thus reducing the impact of constant 
voltage shifts as produced by volume conduction. As is evi-
dent from these examples, spatial transformations are often 
used as preprocessing steps, applied to single-trial data, or 
to averaged data. The order in which these steps are applied 
is crucial for the pipeline to yield interpretable results.

For example, performing spectral analyses on absolute 
source strength values rendered by a distributed source 
model projection is incorrect, because the phase informa-
tion of the underlying signal is no longer present in absolute 
source strength values. Instead, spectral transformations 
will have to be performed on source representations that still 
possess phase information (Hauk et al., 2002). In a similar 
vein, performing source estimation on power spectra or on 
time-varying power is also incorrect in most cases, because 
the phase/polarity information needed is no longer present 
and the data are not in the unit (e.g., voltage, magnetic field 
strength) that the source projection algorithms expects. 
Instead, spatial transformations, such as CSD or source es-
timation, may be applied on the real and imaginary parts of 
the complex spectrum that are output by a Fourier analysis, 
or on corresponding complex elements form other analyses 
that are still endowed with phase information. The flow-
chart in Figure 7 summarizes these issues.

In summary, it is strongly recommended that authors 
report the reference used during EEG recording, along 
with any subsequent spatial preprocessing steps and 
transformations, and the order in which they are applied. 
Additional methods for heightening the validity of inter-
site analyses are discussed in Section 3.4.

3   |   RECOMMENDATIONS 
FOR REPORTING ON SPECIFIC 
ANALYTICAL TECHNIQUES

This section gives specific recommendations for widely 
used methods. Brief explanations are given, some of which 
expand concepts introduced above. Summary recommen-
dations are given at the end of each sub-section, and read-
ers are also invited to use the corresponding checklists at 
the end of this document.

3.1  |  Spectral analyses

As discussed in Section  1.1, the spectrum of a neu-
ral time series is a representation in which the x axis 
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shows frequency in Hz, and the y axis shows spectral 
amplitude, power, or phase at each of the frequencies 
plotted on the x axis (see Figure  1, right panel). The 
most widely used form of spectral analysis technique 
in neuroscience is a variant of Fourier analysis, called 
the discrete Fourier transform (DFT). The output of 
the DFT is a complex spectrum, which contains two 
values for each frequency, the real (i.e., cosine) and 
imaginary (i.e., sine) components (see Figure  5 and 
Section 1.3). From these components, the power (i.e., 
magnitude, computed as the modulus of the two val-
ues) and phase (i.e., relative position in the oscillatory 
cycle, computed as the arctangent of the imaginary 
over the real component) can be determined, after tak-
ing into account two properties of the raw DFT spec-
trum: First, it is symmetrical in nature, mirrored at the 
Nyquist frequency (i.e., half of the sampling rate), and 
the portion above Nyquist is not interpretable; Second, 
because DFT is mathematically an integral across 
time, the raw power increases with the duration of the 
input segments.

3.1.1  |  Normalization of the spectrum

To facilitate interpretability of the power values across 
different studies using different interval lengths, many 
available implementations for neural time series analy-
sis contain normalizations for the length of the ana-
lytical segment used to calculate the spectrum, often by 
dividing the power by the number of bins in the spec-
trum. Normalization by the length of time often results 

in a density measure with a unit of power (e.g., μV2/Hz). 
Further normalization steps involve multiplying the valid, 
lower half of the power spectrum by 2, or equivalently 
multiplying it by its complex conjugate, and discarding the 
invalid portion above Nyquist to correct for the allocation 
of power to the invalid portion the spectrum. Reporting on 
any normalization steps involved in the spectral analysis 
is strongly encouraged, because it enables the interpreta-
tion of published spectral power values and fosters repli-
cability and reproducibility of findings. See https://github.
com/kylem​ath/Mathe​wsonM​atlab​Tools/​blob/maste​r/
EEG_analy​sis/kyle_fft.m for an example implementation 
in MATLAB code.

3.1.2  |  Measuring band power 
from the spectrum

As discussed in Sections 2.1 and 2.2, specificity of effects 
in a frequency band of interest depends on a range of as-
sumptions regarding the composition of the spectrum. 
Regardless of how these assumptions were addressed, 
specificity of effects in a frequency band may be tested 
by entering other control band power values from the 
same spectrum in the analysis and using appropriate 
statistical models to examine specificity (see Section 4.1 
for examples and guidelines). When using band power, 
it is generally recommended to report the full spectrum 
from which the band was extracted, along with the way 
band power was measured (e.g., mean, median, peak), 
and how 1/f effects or other spectral shape effects were 
addressed.

F I G U R E  7   Combining source estimation (including similar spatial transformation such as CSD) and spectral analyses in a sequential 
analysis pipeline. Pipelines with inappropriate ordering of analytical steps (shown in red) may yield non-interpretable results, or results 
that do not reflect what the user intends. For example, most source estimation algorithms assume that the original polarity in EEG/MEG 
recordings is present and thus yield uninterpretable results when applied to power spectra. Authors may wish to ensure that the sequence of 
processing steps as applied in their pipeline is appropriate for their data type

https://github.com/kylemath/MathewsonMatlabTools/blob/master/EEG_analysis/kyle_fft.m
https://github.com/kylemath/MathewsonMatlabTools/blob/master/EEG_analysis/kyle_fft.m
https://github.com/kylemath/MathewsonMatlabTools/blob/master/EEG_analysis/kyle_fft.m
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Another widely used approach has been the computa-
tion of relative power, where the relative contribution 
of a given frequency band of interest to the total spec-
tral power is expressed as a ratio, dividing the power in 
each frequency band, including the band of interest, by 
the total power across all frequency bands. This method 
reduces biased estimates that arise from differences in 
spectral offset and expresses power as percentage, or an-
other proportion metric, of the total power. However, it is 
important to note that low- and high frequencies from the 
same Fourier spectrum are based on the same window 
length. Thus, it becomes improper to compare power of 
distant frequencies. For example, if 3000 ms of data are 
used, 1 Hz is estimated based on three cycles and 100 Hz 
is estimated based on 300 cycles. Wavelet techniques in 
which the number of cycles changes as a function of in-
creasing frequency (see Section 3.2.4) can be used in this 
case to reduce this bias. Relative power estimation may 
introduce new biases reflective of the 1/f shape as dis-
cussed in recent reports (Barry & Blasio, 2021; Donoghue 
et al., 2020) and is not recommended, but, if used, the full 
power spectrum should be reported (Pivik et al., 1993).

Researchers may also have a priori hypotheses re-
garding specific ratios between frequency band power 
values extracted from the same spectrum, such as the 
ratio of power values in the traditional alpha (8–12 Hz) 
and theta (4–7 Hz) frequency bands. It should be noted 
that these relatively simple indices, although tradition-
ally used, have received substantial recent criticism 
for being confounded with the overall spectral offset 
and with the shape of the spectrum they are calculated 
from (see Sections  2.1 and 2.2). They may thus be re-
placed by more sophisticated analyses mentioned in 
Section  2.2, which are already available to researchers 
(see Section 4.1 below; Clements et al., 2021; Donoghue 
et al., 2020). Metrics of relative spectral indices may also 
be informed by neurophysiological theories of brain 
function (Haegens et al., 2022; Lisman & Jensen, 2013) 
and may increase the external validity of the measure-
ment under certain circumstances. Where such metrics 
are used, it is recommended that the spectral analysis 
underlying the calculation of the relative power mea-
sures be detailed as described in this section.

3.1.3  |  Edge artifacts and window functions

Because spectral representations reflect all existing variance 
in the time series, large variations in values at the beginning 
and end of the empirical input time series, due the abrupt 
bound of the time series, lead to spectral distortions, known 
as “edge artifacts”. Edge artifacts are present in many situ-
ations where temporally constrained intervals are analyzed, 

as is often done in time-frequency analysis, but also in many 
studies measuring spectral power. To minimize these ef-
fects, researchers often apply window or taper functions, 
which ramp up from zero to one and back to zero. Weighting 
the data series by such a function forces the ends of the data 
vector to zero. Different taper window functions are defined 
by the way in which they ramp up to one and down to zero. 
Common window functions include Hann(ing), Hamming, 
Kayser, Bartlett, Tukey, Blackman, and Cosine-Square func-
tions. Many window functions do not allow or require the 
definition of a ramp-up/ramp-down duration because they 
ramp up over half of the segment and then down over the 
second half, reaching a value of unity only at the midpoint of 
the segment, so that only the midpoint remains at its original 
value (i.e., is multiplied by 1). In these cases, as well as in 
cases where the ramp-up and ramp-down periods are set by 
the researcher, these parameters should be reported along 
with the duration and type of the window function. Choices 
in this regard may be guided by computational principles 
(Harris, 1978) but also by aiming to replicate common meth-
ods (e.g., most use a Hann or Hamming window).

Averaging the spectral estimates of multiple overlapping 
windows within a segment is often used in spectral anal-
ysis to increase the signal-to-noise ratio of the spectrum. 
However, because of the Fourier uncertainty principle de-
scribed above (see Section 1.3.2), estimating spectra for mul-
tiple, shorter, sub-segments also decreases the frequency 
resolution of the spectrum. Thus, replicability of the analy-
sis is only achieved by fully reporting the type, number, and 
overlap of any window functions used in the estimation of 
the spectrum. A further reason for fully describing window 
functions lies in the fact that the application of a window 
function often changes the so-called leaking effects, or 
the spurious artifactual shifting of power to other parts of 
the spectrum, adding to the power, if any, at those frequen-
cies. Leaking is often observed in spectra with relatively 
short analytical intervals. Under certain conditions, some 
applications benefit from non-windowed spectral analysis, 
especially those in which the specific frequency of interest 
is exactly known a priori, such as in studies of brain stimu-
lation or steady-state potentials. In these cases, researchers 
may wish to avoid window functions and instead ensure 
that full cycles of the frequency of interest are present in the 
analytical interval (i.e., select interval that is an integer mul-
tiple of that cycle length) and that trends and offsets from 
baseline are removed as needed.

3.1.4  |  Non-Fourier methods

As discussed above (see Sections 1.3 and 2.1), the basis 
functions used for quantifying the spectral power at 
each frequency are critical for the correct interpretation 
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of power spectra. In addition to the many flavors of 
Fourier analysis, all of which use sine and cosine basis 
functions for spectral estimation, several other ap-
proaches are frequently used. These methods include 
autoregression, in which oscillatory patterns in the data 
are quantified based on linear prediction of future data 
points by past data points, and a range of methods in 
which basis functions are estimated empirically, from 
the data themselves. This section briefly discusses rec-
ommendations for methods based on autoregression 
and on empirical basis functions.

Parametric spectral analysis
In contrast to the non-parametric, Fourier-based approaches 
discussed above, parametric spectral analysis starts with the 
assumption that the measured data are realizations of an un-
derlying stochastic process that can be well-characterized by 
an autoregressive (AR) model (Ding & Rangarajan, 2013). 
An AR model predicts future points by past points from the 
same time series. The extent to which its assumptions are 
met should be addressed in the manuscript, which may in-
clude tests of statistical stationarity of the time series (see 
Section 2.4). The parameters of the AR model, including the 
model order and the model coefficients, are estimated from 
the data and become the basis for obtaining spectral quantities 
such as the power spectrum. The advantages of the parametric 
method include the ability to resolve spectral quantities to ar-
bitrarily high resolution in the frequency domain, the ability to 
obtain smooth spectral estimates, being less vulnerable to the 
shortness of data segments, and the ability to generate Granger 
causality spectra. Disadvantages include the potential diffi-
culty in identifying an optimal model that fits the data well. It 
is recommended that the model order be reported in addition 
to the method in which it was determined (e.g., Bayesian or 
Akaike Information Criterion; Akaike, 1974). In addition, the 
exact implementation of the autoregressive algorithm should 
be given, with specific references or in mathematical form.

Data-based analyses
Methods for spectral analysis based on empirical features 
have existed for a long time and have recently seen revived 
interest (Loza,  2019; Melkonian et al.,  2003). For exam-
ple, a range of spectral analysis algorithms, so called half-
wave analyses, aim to identify peaks or zero-crossings in 
the data, which are taken as indexing the completion of 
one half-cycle of the oscillation of interest (Oken,  1986; 
Pooja et al., 2021). Several variants of so-called matching 
pursuit algorithms are also increasingly used (e.g., Loza & 
Principe, 2016). These computationally demanding meth-
ods quantify the overlap between a user-defined set (i.e., 
dictionary) of oscillations of interest (i.e., atoms) and the 
empirical data. If these methods are used, reproducing 
the approach is aided by reporting the specific algorithm 

used and providing mathematical formulation and links 
to example data and working code. Papers proposing new 
analytical methods and algorithms are expected to provide 
the code needed for running the analyses, enabling review-
ers and readers to test and use the method. Often, pre-
processing steps are crucial for reproducing the analyses. 
Thus, providing details about these steps facilitates com-
munication as well. For instance, knowing the exact type 
of band-pass filter used for zero-centering a signal prior to 
half-cycle analysis is required for replicating the analysis.

3.1.5  |  Summary: Reporting spectral analyses

In summary, it is recommended that studies using fre-
quency domain analyses provide an explicit conceptu-
alization of the spectral phenomenon of interest (see 
Section 2.1), and a rationale for how the dependent vari-
able was measured. In addition, the duration of the data 
segment of interest that was used for transformation into 
the frequency domain should be given, accompanied by 
the frequency resolution of the spectrum and details re-
garding taper windows or other ways in which edge arti-
facts were addressed. The way in which data epochs were 
combined within and across recording segments, such as 
through overlapping windows and how the resulting spec-
trum was normalized should be detailed as well. Finally, it 
is strongly recommended that figures be included showing 
the spectral shape from representative sensor locations, 
instead of showing only reduced data such as bar graphs 
or scatter plots for mean band power (see Section 4.2 for 
recommendations about data figures).

3.2  |  Time-frequency analysis

Several methods are available to investigators for analyz-
ing the event-related changes in oscillatory activity as they 
evolve over a given period. Because most time-frequency 
analyses are extensions of the frequency domain ap-
proaches discussed above, the same reporting guidelines 
apply regarding describing the nature of the input data, 
the exact steps taken by the algorithm used, and any 
transformation/normalization steps performed. In the fol-
lowing we discuss additional aspects of time-frequency 
domain analysis for widely used methods.

3.2.1  |  Reporting inputs of time-
frequency analysis

As a main determinant of the frequency information con-
tained in spectral representations, the temporal duration 
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of the segments entering time-frequency information 
provides crucial information. In addition, the length and 
shape of any window functions and how they were ap-
plied will affect the interpretability of time segments at 
the beginning and end of the temporal segment. Notably, 
the duration and temporal position of a segment used 
for a pre-stimulus (baseline) period can introduce data 
from the post-stimulus interval through smearing in the 
time domain. Baselining is therefore discussed in detail 
in Section 3.2.6 below, along with guidelines for report-
ing the time and frequency resolution of the frequencies 
of interest (see Section 3.2.4 below).

It is crucial that authors communicate the processing 
stage at which the time-frequency analysis is applied: 
Applying time-frequency analysis to single trials, fol-
lowed by hypothesis testing or additional averaging, em-
phasizes different aspects of the oscillatory activity (e.g., 
spontaneous or induced in Galambos' taxonomy, above) 
compared to applying the time-frequency analysis after 
trial averaging (emphasizing “evoked” oscillations in 
Galambos' taxonomy).

Some published work in the field subtracts the aver-
aged potential (i.e., the ERP) from each single trial prior 
to time-frequency analysis on single trials, aiming to em-
phasize oscillations that are not time- and phase-locked to 
the anchoring event. If this technique is used, replication 
depends on this step being prominently mentioned in the 
manuscript and the averaged potential shown in the time 
and frequency domain. Subtracting cross-trial average 
waveforms from single-trial waveforms is not generally 
recommended, because it assumes additive, linear rela-
tions between single trials and the average, which may not 
be the case (e.g., Moratti et al., 2007). As such, subtraction 
techniques may introduce spurious power indications, 
such as reflecting the variable latency of time-locked po-
tentials across single trials (Li et al., 2009; Xu et al., 2009). 
This is particularly problematic in cases where the evoked 
response is driven mainly by phase locking rather than 
changes in signal amplitude. These problems may be 
addressed by quantitatively assessing the amount of 
phase similarity across trials. Available techniques (see 
Section 3.3) allow researchers to quantify the amount of 
phase locking across trials, rather than assuming linearity 
in the interaction of induced and evoked activity.

3.2.2  |  Time-frequency methods based on the 
Fourier transform: Spectrogram, moving DFTs, 
complex demodulation, and multitapers

One obvious means of measuring changes in oscillatory 
activity over time is to apply any of the spectral domain 
methods described above to shifted time segments of data. 

Versions of this approach are commonly used with Fourier 
spectra and are referred to as spectrograms, or moving-
window DFT/FFT analyses. For example, researchers may 
calculate a DFT for a window comprising the first 400 ms 
of the analytic segment, and then shift this window by one 
or more sample points until it reaches the end of the ana-
lytic segment. When applying this approach, it is recom-
mended to report the step size and window length, along 
with any within-window averaging done by algorithms 
such as the Welch periodogram method. Paralleling the 
recommendations for Fourier spectra discussed above, 
time domain data are typically multiplied by a taper win-
dow function prior to DFT, and reporting the type of the 
taper window function used along with its temporal prop-
erties is crucial for replication. This is particularly true for 
multitaper analysis, in which multiple window functions 
are applied prior to the moving-window DFT to extract 
different information (e.g., power at different frequen-
cies), and the resulting time-varying spectra are then com-
bined to optimize the trade-off between resolution in the 
time and frequency domain. If multitapers are used, it is 
recommended that authors report the number of differ-
ent tapering windows used, their center frequencies, any 
smoothing factors that are applied, and the algorithm used 
for generating their shapes (e.g., the Slepian sequence).

Complex demodulation is a technique in which sine and 
cosine functions tuned to a frequency of interest are mul-
tiplied by the data in the time domain, followed by low-
pass filtering to isolate the envelope of the time-varying 
power at the frequency of interest. This process may be 
repeated at different frequencies of interest, resulting in a 
time-by-frequency representation. It is recommended that 
usage of complex demodulation is accompanied by re-
porting the frequencies examined and detailed description 
of the low-pass filter employed, including filter type, filter 
order, and how the cutoff frequency was defined (e.g., as 
the 3 dB power or amplitude point).

3.2.3  |  Time-frequency methods based on 
time domain filtering

If a specific frequency of interest is known a priori, authors 
may opt to use time domain filtering, in combination with 
other techniques, to isolate the time-varying power at a 
given frequency. One widely used group of methods using 
this approach are the Filter-Hilbert methods. These meth-
ods are based on the idea that oscillatory activity at a given 
frequency can be quantified by a combination of band-pass 
filtering and subsequent estimation of the instantaneous 
(moment-by-moment) phase using a mathematical tech-
nique that estimates a phase-shifted version of the empiri-
cal signal, the so-called analytical signal. Combining the 



      |  19 of 37Keil et al.

two signals (empirical and analytical) for each time point 
using the modulus function (the square root of the sum 
of their squares) yields an estimate of time-varying am-
plitude at the frequency of interest. It can also be used to 
estimate time-varying phase using the arctangent of the 
ratio of the empirical and analytical signal for each time 
point. If the Filter-Hilbert, or a similar approach, is used 
it is recommended that the implementation (software and 
version number) of the Hilbert transform used for finding 
the phase-shifted version of the empirical signal and the 
details of the band-pass filtering process, including filter 
types used, filter order, and how the cutoff frequencies are 
defined (i.e., the half-power, or half-amplitude point) be 
reported. Because the Filter-Hilbert method is based on 
estimating time-varying phase, it is critical for correct ap-
plication that the filter be narrow-band, focusing on one 
frequency. Broadband phase is mathematically undefined 
and empirically meaningless, and Hilbert transforms ap-
plied to broadband data yield meaningless indices. Thus, 
it is strongly recommended that the description of the fil-
ter allow readers to assess the extent to which the result-
ing time domain data were narrow-band as opposed to 
broadband in nature.

3.2.4  |  Time-frequency methods based 
on wavelets

Wavelet analysis is a widely used method for estimat-
ing the time-varying oscillatory properties of a neural 
time series. So-called wavelet families are groups of finite 
time series that are tuned to different frequencies and are 
convolved with the empirical signal. Wavelet analysis 
has been widely used because of its favorable properties: 
Differing from standard spectrograms, which are defined 
by fixed temporal smoothing across frequencies and fixed 
frequency smearing across time points, wavelets have var-
iable time and frequency smoothing in which lower fre-
quencies are more precisely represented in the frequency 
domain, whereas higher frequencies are more precisely 
represented in the time domain. Readers interested in the 
application of wavelet analysis may want to peruse the 
seminal review by Tallon-Baudry and Bertrand (1999) or 
read recent textbooks covering this topic (Cohen, 2014). 
Morlet wavelets are the most commonly used wavelets 
in neuroscience. In the time domain, they represent seg-
ments of sine and cosine functions at the frequencies of 
interest, multiplied by a Gaussian envelope. The width of 
the Gaussian envelope determines the trade-off between 
temporal smoothing and frequency smoothing and is in 
turn under the control of the Morlet parameter m. The 
Morlet parameter is typically between 5 and 10 and often 
equated with the number of cycles present in each wavelet 

of the family. Smoothing (or smearing) is a consequence 
of the Fourier uncertainty principle and represents an 
uncertainty in the temporal or frequency position of the 
signal. Smearing that introduces artifact or spurious ef-
fects from outside the time-frequency range of interest 
undermines validity. We discuss strategies for managing 
smoothing later in this section.

Some implementations (e.g., wavelet analysis in 
EEGLAB; Delorme & Makeig,  2004, https://sccn.ucsd.
edu/eegla​b/index.php) increase the amount of smoothing 
across the range of frequencies (e.g., higher frequencies 
experience greater smoothing), and this should be noted 
in the manuscript. Exact reporting of the settings used in 
defining a wavelet family is crucial for exact replication 
and reproduction of empirical findings. It is particularly 
helpful for readers if authors report the maximal temporal 
and frequency smoothing associated with a given wavelet 
family. For example, reporting on the smoothing in time at 
the highest and lowest frequency of interest, and the fre-
quency smoothing at the lowest and highest frequency of 
interest enables readers to interpret differences in latency, 
or differences in frequency.

In an example experiment, researchers decide to con-
duct a wavelet analysis. They report the following to de-
scribe the wavelet family chosen:

A family of complex Morlet wavelets 
(Bertrand et al., 1994) were used to compute 
time-by-frequency representations of each 
artifact-free trial. A Morlet constant m = 7 was 
chosen because it ensured acceptable trade-
off between time and frequency smoothing 
in the frequency range between 8 and 120 
Hz (Tallon-Baudry & Bertrand,  1999). The 
Morlet constant m defines the ratio of each 
analysis frequency f0 and the standard devi-
ation σf of the wavelet in the frequency do-
main, which corresponds to the smoothing in 
the frequency domain.

The corresponding smearing in the time do-
main is given as

Thus, given a segment length of 1600  ms 
(600  ms baseline and 1000  ms post-onset), 
wavelets were spaced at the native frequency 
resolution of 1/1.6 = 0.625 Hz. Wavelets with 
a center frequency between 8.75  Hz and 
12.5  Hz were used to quantify alpha-band 

(1)�f = f 0∕m.

(2)�t = 1∕ (2∗pi∗�f)

https://sccn.ucsd.edu/eeglab/index.php
https://sccn.ucsd.edu/eeglab/index.php
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changes. Because the width of wavelets in 
the frequency and time domains changes as a 
function of m (7 here), frequency smoothing 
(σf) was 1.25 Hz (8.75 Hz/7, Equation 1) for 
the wavelet centered at 8.75 Hz and 1.79 Hz 
(12.5 Hz/7, Equation 1) for the wavelet cen-
tered at 12.5  Hz. Applying Equation  (2), 
temporal smoothing (σt) at these frequen-
cies was 1/(2*pi*1.25)  =  0.127  s and 1/
(2*pi*1.79) = 0.89 s, respectively. In the high-
frequency band of interest, σt at 30 Hz was ….

Thus, in the case of Morlet wavelets, the standard de-
viation (smoothing) in both the time (σt) and frequency 
(σf) domains can be obtained using Equations (1) and (2). 
Smoothing changes with the frequency in both the time and 
frequency domain, because of Equation (1).

For methods other than wavelet analysis, different 
ways exist to identify the temporal and frequency smooth-
ing at frequencies of interest. If unsure how to find these 
metrics for their specific method, researchers may empir-
ically measure the smoothing by applying their algorithm 
to a pulse signal. A pulse signal is a vector of zeros having 
the duration of the empirical data to be analyzed, with a 
singular unit value (i.e., the number one) at its center. The 
full width at half maximum (FWHM) of the pulse in the 
filtered data is a metric corresponding to σt and σf and is 
often used to measure uncertainty or spread in time series 
analyses. An extensive tutorial and discussion of FWHM 
in time-frequency analysis with Morlet wavelets is given 
in Cohen (2019). Importantly, knowing and reporting the 
temporal and frequency smoothing is also crucial for any 
baselining procedures, discussed below.

3.2.5  |  Time-frequency methods based on 
Cohen’s class reduced interference distributions

The reduced interference distribution (RID) from Cohen’s 
class of time-frequency transforms offers a kernel-based 
approach to computing time-frequency transforms. A 
kernel is an algorithm which maps an input to an out-
put. For a description of the RID, see (Cohen, 1995), and 
for additional discussion of differences with wavelets, 
see related EEG/ERP applications (Aviyente et al., 2011; 
Bernat et al.,  2005). Perhaps the most relevant features 
of RIDs are represented in the nonlinear transforms they 
produce. RID time-frequency transforms have uniform 
time-frequency resolution, with accurate instantaneous 
power, and include local and global features. This means 
that they minimize the smoothing in time at low frequen-
cies and the smoothing in frequency at high frequencies 
that is observed with wavelets (see Section 3.2.4). This is 

most relevant for event-related applications, where the 
high time resolution of the EEG/MEG is used to infer the 
timescale of brain signals. Another key property of RIDs 
is the preservation of power in the time-frequency repre-
sentation of the signal (generally referred to as satisfying 
the marginals—sums across the time-frequency rows or 
columns). There is not currently evidence demonstrat-
ing that satisfying the marginals is relevant for EEG/ERP 
work, although when comparing time and time-frequency 
domain results it is helpful to have the same accurate pres-
ervation of the signal power across domains. As stated 
above, RIDs are nonlinear, relative to wavelets, and thus 
can be more difficult to interpret (e.g., signal reconstruc-
tion is more complicated). Finally, the RID characterizes 
global features (e.g., harmonics), relative to wavelets, 
which index only local activity. Several other approaches 
exist, which leverage kernels describing time-frequency 
distributions.

3.2.6  |  Baseline adjustment

The output of most time-frequency analyses consists of 
high-dimensional matrices of complex numbers, often 
containing values for sensors, time points, and frequen-
cies. In addition, different indices may be computed. 
Time-varying spectral power is the most frequently used 
index, representing the magnitude of the oscillatory activ-
ity at a given sensor, time, and frequency. Power at one 
sensor or in one region of interest may be illustrated as 
a two-dimensional map, which shows the time-varying 
power over time relative to the event of interest at differ-
ent frequencies. This allows us to compare spectral power 
observed before and after an event of interest, as well as 
at different temporal distances from this event. However, 
as discussed in Section 2.1, the interpretation of changes 
from baseline rests on assumptions regarding the underly-
ing processes contributing to the spectrum. Furthermore, 
because power is a measure of variance, it is often distrib-
uted in a skewed manner across observations (e.g., trials, 
participants), which may complicate statistical analyses. 
To address this challenge, investigators may use transfor-
mations, such a log transform, with the purpose of making 
the observed distributions more Gaussian. However, trans-
formations such as the log transform imply a multiplica-
tive model of the time-by-frequency matrix, as discussed in 
Section 2.1. Paralleling the recommendations for spectral 
analysis, the model and assumptions underlying the com-
position of the time-frequency plane and their implications 
for data reduction should be described in the manuscript.

Researchers often perform a baselining procedure, in 
which the time-varying power is expressed as change in 
power relative to a suitable pre-stimulus time segment. 
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Selection of the baseline segment should take into ac-
count the Fourier uncertainty principle mentioned above: 
Although a spectral estimate may be available for each 
sample point, the data in a time-frequency representation 
contain information that is smeared/smoothed, both in 
the temporal and frequency dimensions. Thus, research-
ers may wish to consider the following selection require-
ments for a suitable baseline segment: (1) The baseline 
segment should not be contaminated by edge artifacts and 
may not include time segments that are subjected to taper 
windows; (2) It should be of sufficient length to render a 
robust estimate of the baseline level; (3) It should be of 
sufficient distance from stimulus onset to exclude activity 
evoked by the stimulus. Such a segment will be tempo-
rally removed from the ramp of the taper window, or from 
the onset of the trial if no window was used, by at least 
one standard deviation (σt), at the lowest frequency con-
sidered in the analysis. In the same vein, the end of the 
baseline segment should be removed from event onset by 
at least one standard deviation. Finally, it is common to 
use a baseline duration that accommodates several cycles 
of the lowest frequency of interest, ensuring that the base-
line segment contains a robust estimate of the oscillatory 
process under consideration. Following the above sugges-
tions prevent the baseline from being contaminated by 
oscillatory activity following the stimulus, or by edge and 
window artifacts from the beginning of the epoch. When 
contrasting conditions, it is important to assure that no 
power differences exist during the baseline interval that 
would confound post-stimulus differences when baseline 
normalization is performed. In general, when performing 
statistical contrasts between conditions, baseline normal-
ization may often be unnecessary, and authors may wish 
to cross-validate analyses with and without baseline ad-
justment, as well as examining any baseline differences 
between conditions.

3.2.7  |  Summary: Reporting on time-
frequency analysis

All time-frequency analyses are strongly affected by the 
nature of the input data: It is thus recommended that au-
thors detail the duration of the time range entering the 
analysis, including the duration of time ranges before and 
after any anchoring events. Paralleling requirements for 
ERP studies, the number of segments entering the analy-
ses in each experimental condition and/or group should 
be reported, as it affects the signal-to-noise ratio of the 
resulting time-frequency representations. Furthermore, 
describing the implementation of the algorithm in suffi-
cient detail to allow reproduction, even in other software, 
is recommended. The temporal and frequency smoothing 

inherent in time-frequency analyses should be reported in 
detail sufficient for readers to interpret the extent to which 
different events and phenomena in the time-frequency 
plane are to be considered overlapping or independent. 
Smearing information at the frequencies of interest also 
allows readers to understand the authors' choice of any 
baseline segments used in the published work. Finally, if a 
nonlinear transformation or baseline removal was applied 
prior to statistical analysis, including a rationale for how 
these choices were made is recommended.

3.3  |  Phase-based analyses

Time domain averaging is a staple of electrophysiology, 
in which segments from repeated trials are time-locked to 
the event of interest and averaged together to minimize 
what is considered noise (e.g., processes that do not have 
similar time courses in each trial). This procedure enables 
calculating and visualizing waveforms that represent the 
mean response, or “evoked” response in Galambos' taxon-
omy. Going beyond this approach that is most prominently 
used in event-related potential (ERP) research, research-
ers may use frequency domain or time-frequency domain 
approaches to quantify the amount of temporal similar-
ity of a given oscillation across repeated trials. Methods 
toward this end are often referred to as phase-locking, 
phase-similarity, or phase clustering analyses (e.g., 
Lachaux et al., 1999). For example, researchers may wish 
to examine the amount of phase-locking of μ-oscillations 
as participants prepare for self-paced manual responses, or 
as participants listen to syllables varying in duration or in-
tensity. For reviews of phase-similarity measures, readers 
are directed to extant tutorial and review papers (Aviyente 
et al., 2011; Lachaux et al., 1999; Roach & Mathalon, 2008; 
Tallon-Baudry & Bertrand, 1999).

3.3.1  |  Reporting on inputs of phase-
based analyses

Because phase is typically extracted by one of the al-
gorithms for extracting power as described above, the 
description of the inputs will likely contain the informa-
tion discussed in Sections  3.1 and 3.2. Several authors 
have found that phase analyses are particularly sensitive 
to filtering, where filtering at high filter orders and/or in 
narrow frequency bands may result in spuriously high 
phase similarity across trials, participants, or sensors 
(Kolev & Yordanova, 1997; Kramer et al., 2008). Thus, 
detailed description of filters is particularly relevant 
when researchers are interested in phase-based analy-
ses. In a similar vein, there is an ongoing discussion 
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regarding the benefits versus disadvantages of mul-
tivariate processing steps, such as independent com-
ponent analysis, often used for artifact removal (e.g., 
Castellanos & Makarov, 2006). To the extent that these 
methods remove a linear combination of channel read-
ings from the data, they may alter the observed phase. 
However, analytical and empirical studies suggest that 
these changes do not affect the phase similarity or phase 
locking across trials or channels. To heighten the ro-
bustness of reported results, authors may want to com-
pare results with and without advanced artifact removal 
techniques. There appears to be a need for systematic 
analyses of processing pipelines on observed effects, and 
such work is increasingly seen in the literature.

The mathematical nature of phase as a metric of lo-
cation in a cycle raises another pertinent issue regarding 
the inputs of phase-based analyses, including analyses in 
the spatial domain as discussed below: Phase is not defined 
for broadband signals. Although it is possible to instruct 
an analytical tool, such as a MATLAB toolbox or Python 
library, to determine the phase for a broadband signal, the 
resulting values are meaningless. Phase is a circular index 
(e.g., degrees) of location within the cycle (e.g., at the peak 
going down; above zero-crossing going up, etc.). If mul-
tiple frequencies exist concurrently, then multiple cycles 
with conflicting locations can be found at any given time 
point, rendering the notion of phase meaningless. Thus, 
when reporting on the input of phase-based analyses, au-
thors may want to specify the frequency specificity of the 
algorithm itself (e.g., convolution with a family of wave-
lets) or the filters used (e.g., the Filter-Hilbert method).

Phase-based analyses are highly sensitive to the num-
ber of trials entering the analysis. For example, the phase-
locking value, often also referred to as phase-clustering 
or phase-synchrony index, computed as a function of 1 
minus variance of phase values over trials, tends to de-
crease with increasing numbers of trials. This makes it 
difficult to compare experimental conditions or groups or 
participants in cases where the number of trials differ. As 
discussed below (Section 3.4), several algorithms are avail-
able for addressing this issue (e.g., Stam et al., 2007), but 
in general it is considered good practice to compare phase-
based indices between conditions after ensuring that the 
trial count for each condition is matched, potentially by 
randomly dropping trials in a condition with a greater trial 
count, likely at the level of participants.

3.3.2  |  Summary: Reporting on phase-
based analyses

The guidelines discussed in Sections  3.1 and 3.2 largely 
apply to phase-based analyses. Reporting on the number 

of trials entering the analysis per condition and subject is 
particularly relevant for phase-based analyses. Authors are 
also encouraged to ensure that phase is not estimated from 
broadband signals (e.g., the phase of a 4–8 Hz band-passed 
signal is undefined). To the extent that phase-clustering 
indices tend to be bounded between 0 and 1, authors may 
wish to take this non-normality into account when con-
ducting statistical analyses (Maris & Oostenveld,  2007; 
Tallon et al., 1995), because many implementations of the 
general linear model assume normality.

3.4  |  Analyses of spatial dependence 
(“connectivity analysis”)

Although temporal sensitivity and specificity are often 
seen as the primary strength of neural time series analy-
sis, these analyses may also provide unique ways to test 
hypotheses regarding interdependencies across space, 
specifically between different sensor or source locations. 
From the perspective of understanding brain function, 
these dependencies may provide a means to quantify 
large-scale interactions or connectivity between brain re-
gions. Since most researchers reading these guidelines are 
likely working with noninvasive methods, we will first ad-
dress the volume conduction issue. Then, we will provide 
a brief overview of commonly used methods and close 
with some comments on reporting.

3.4.1  |  The volume conduction problem

Volume conduction, or “field spread”, describes the phe-
nomenon that neural activity in one area is captured not 
only by an electrode in the vicinity, but also by other elec-
trodes at more distant locations. This leads to two relevant 
problems when it comes to studying neural interactions, 
especially when using EEG or MEG: 1) Signals from adja-
cent sensors will be highly correlated, without providing 
evidence for actual interactions between separate phe-
nomena; 2) The signal at one sensor is a mixture of several 
underlying sources that are concurrently active. For these 
two main reasons, interpreting cross-area interactions 
from data recorded at the scalp is highly problematic. 
Therefore, it is advised to apply some form of spatial filter-
ing to “unmix” the signal and, when using approaches for 
source reconstruction, to ideally obtain anatomically in-
terpretable signals.1 If a priori regions of interest are avail-
able, researchers may decide to perform source modeling 

 1Note that intracranial recordings such as ECoG do not completely 
eliminate issues of volume conduction, especially when using a 
unipolar reference; e.g., Mercier et al., (2017).
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by using coordinates determined from a separate localizer 
run. Although this step will mitigate the volume conduc-
tion issue somewhat, depending on the inverse modeling 
approach used (Schoffelen & Gross, 2009), the issue will 
not be entirely eliminated, which has to be considered 
when interpreting and reporting the results.

3.4.2  |  Common oscillation-related 
connectivity measures

Brain oscillations have been proposed to play an important 
role in enabling inter-area communication (Singer, 1999). 
For example, optimal alignment of oscillatory phases, re-
flecting different excitability states, has been proposed to 
enable or block communication between respective neu-
ral ensembles (Fries, 2015). In this regard, spectral coher-
ence (Nunez et al., 1997) and phase synchrony (Lachaux 
et al., 1999) are the most common measures for quanti-
fying the consistency of phase differences between two 
recording sites. Another popular approach is to quantify 
correlations between the amplitude envelopes of band-
pass filtered signals (e.g., Hipp et al., 2011), even though 
it is less clear how these slower processes support inter-
areal communication compared to the aforementioned 
phase-based approaches. Amplitude correlation as well 
as coherence/phase-synchrony measures are heavily in-
fluenced by volume conduction. Variations of methods 
mitigating this issue have been proposed (e.g., orthogo-
nalization of envelope time-series, imaginary coher-
ence, weighted phase-lag index; Nolte et al.,  2004; Stam 
et al., 2007). Together, these measures capture aspects of 
linear dependencies between two signals, without provid-
ing information about their directionality. This may be in-
sufficient in some cases, and methods that operationalize 
causality in terms of temporal causality may be desirable. 
Granger causality estimated from Fourier-transformed 
data (Dhamala et al., 2008) is gaining popularity because 
it does not require the user to determine the model order, 
as is required in autoregressive modeling (see Section 
“Data-based analyses”).

Whereas linear relations are in general more easily 
understood and modeled, some interdependencies may 
be non-linear. Undirected (e.g., Mutual Information) and 
directed (e.g., Transfer Entropy) measures have been ap-
plied recently to capture interdependencies, within and 
across frequency bands, in a generalized manner (e.g., 
Giordano et al.,  2017). Finally, all aforementioned mea-
sures are data-driven (i.e., they do not involve an explicit 
model of how the data are generated). When a generative 
neuronal model exists, along with a clear and circum-
scribed region of interest, then using a Dynamical Causal 
Model framework also offers an interesting option to 

quantify interactions, along with other parameters of the 
neuronal model (Friston et al., 2012).

3.4.3  |  Reporting on outputs of interareal 
dependence analysis

This section aims to illustrate that there is no single best 
measure to quantify “connectivity” based on EEG/MEG 
signals. In practice, the decision about which measures to 
report will most commonly depend on the time scale of 
the putative interaction (e.g., slow: envelope correlations; 
fast: phase-based measures), and whether the direction-
ality of the interaction is a relevant piece of information 
with regards to the research question. A crucial need is to 
explicitly describe how the volume conduction issue is ad-
dressed. Contrasting conditions does mitigate this issue. 
However, especially for measures such as coherence or 
phase synchrony, which are appealing due to their pre-
sumed mechanistic relevance, problems remain when 
condition differences in terms of power are present in an 
overlapping frequency range. Stratifying trials within con-
dition with respect to power or resorting to measures less 
affected by volume conduction would provide alternative 
ways of addressing this issue. Independent of the choice 
of connectivity metric, applying approaches to unmix the 
signals is also helpful. Researchers should precisely de-
scribe the source-modeling approach used (e.g., sparse 
or distributed set of sources). Next, to mitigate volume 
conduction issues, these approaches also make the results 
more interpretable by referring to an anatomical region 
rather than to an arbitrary electrode or sensor. When clear 
regions of interest exist, results may be depicted using sur-
face or volume plots in which connectivity strength (or 
differences between conditions) are shown with reference 
to the seed region. These 3D depictions are not possible 
unless applying graph theoretical measures (Bullmore 
& Sporns,  2009), when full (i.e., all-to-all) connectivity 
effects need to be visualized. For this purpose, circular 
connectograms or Sankey plots (Schmidt,  2008) may be 
an option. Although all-to-all connectivity analyses may 
sound appealing, they dramatically increase the multiple-
comparison issue, even more so when time and frequency 
are included as additional dimensions. Therefore, hav-
ing at least one clear region of interest facilitates not only 
computation, but also the reporting of effects.

3.4.4  |  Summary: Reporting on spatial 
dependence analyses

In addition to reporting on the methods for generating the 
spectral representation used for assessing the dependence, 
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the metric, and algorithm used (e.g., inter-site phase lock-
ing, Granger causality, DCM) should be reported with 
references that facilitate replication. The same applies 
when using Graph theory to describe connectivity matri-
ces. Citing software version and manufacturer of software 
does not suffice in this regard. Likewise, the method for 
addressing volume conduction or spatial smearing should 
be detailed and the algorithm provided. Finally, it should 
be made clear to what extent spatial nodes examined were 
hypothesized a priori or discovered ad hoc, because the 
multiple comparison problem tends to be particularly se-
vere in studies with dense sensor arrays and full site-to-
site connectivity.

3.5  |  Testing hypotheses regarding 
interactions between oscillations at 
different frequencies and interactions 
between oscillations and behavior 
(coupling analyses)

In recent decades, driven by computational and animal-
model work, interest has grown in interactions between 
brain oscillations at different frequencies. Researchers 
have developed methods to characterize different types of 
cross-frequency interactions, which are often categorized 
by what is being measured for each of the oscillations of in-
terest. Furthermore, similar techniques are widely used to 
assess coupling between neural and autonomic (Mueller 
et al., 2010) or neural and behavioral data (Vanrullen & 
Dubois, 2011). In this section, we provide recommenda-
tions for reporting on the usage of these approaches.

3.5.1  |  Principles of cross-frequency 
coupling analyses

Many studies interested in cross-frequency interactions 
use an approach akin to cross-tabulation in statistical de-
pendence analysis. For example, phase-to-amplitude cou-
pling methods quantify the extent to which the phase at 
one frequency is systematically related to the amplitude 
at another frequency (Canolty & Knight,  2010; Kramer 
et al., 2008; Voytek et al., 2013). In a similar vein, phase-
to-phase and amplitude-to-amplitude coupling analyses 
aim to quantify statistical dependencies between phases or 
amplitudes measured at different frequencies. Specifically, 
with respect to phase-to-amplitude measurement, various 
techniques follow the same logic: Take a time series and 
transform it into a spectrogram, divide the phase values 
of a lower carrier frequency into bins, for each bin find all 
the time points with that phase, and measure the power 

of higher frequencies during these time points. Next, ob-
serve the distribution of power in high frequencies as a 
function of low-frequency phase and compare this to a 
null distribution with parametric (χ2) or nonparametric 
tests. Recent reviews of various techniques recommend 
the Modulation Index (MI) as a robust estimate for char-
acterizing the coupling between phase and power (Tort 
et al., 2010), but many alternative algorithms have been 
used (Hülsemann et al., 2019). These algorithms are often 
applied across a range of higher frequencies in order to 
identify the frequencies with the most phase locking to 
the low-frequency carrier frequencies. Analyses that focus 
on coupling between power at different frequencies or 
phase angles at different frequencies tend to follow the 
same principle of identifying statistical dependence, often 
using cross-histograms.

3.5.2  |  Principles of brain-behavior 
coupling analyses

Rooted in the notion that brain oscillations represent cy-
cles of excitability of neural populations, there is a long 
history of research into the relationship between the 
phase of ongoing oscillatory activity and behavior or other 
physiological phenomena (Klimesch, 2018). The relation-
ship between phase and behavior can be tested with a va-
riety of methods, many of which were recently compared 
in a systematic review (Wolpert & Tallon-Baudry, 2021). 
These methods generally follow the same logic as those 
described for cross-frequency coupling: The oscillatory 
phase or amplitude is divided into bins, and the distribu-
tion of the behavioral variable across these neural bins is 
analyzed.

3.5.3  |  Reporting on the implementation of 
coupling analyses

When reporting on cross-frequency coupling analyses, 
we recommend a clear indication of the algorithm used, 
including all necessary preprocessing steps to sepa-
rate out the frequency bands of interest. As discussed in 
Section 3.3, estimation of phase requires narrow-band sig-
nals, highlighting the benefit of detailing the underlying 
frequency or time-frequency analysis. If binning is used as 
described above, authors should indicate how many bins 
were used. It is also recommended to report the number of 
trials going into each condition, and to ensure equal num-
ber of trials. If the number of trials differs between condi-
tions, then the same goal can be accomplished through 
resampling of trials.
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3.5.4  |  Reporting the output of 
coupling analyses

Many different statistical indices of coupling are used in 
the field. It is recommended that the variables be nor-
mally distributed if using parametric statistical tests or 
apply normalizing transformations. Care should also be 
taken to ensure that other assumptions of the statistical 
model are met. Nonparametric tests are also widely used, 
including approaches using permutation, randomization, 
and re-sampling techniques (Groppe et al., 2011; Maris & 
Oostenveld, 2007). Authors should report the specific al-
gorithm used, provide a link to the code used, and indicate 
what was randomized/permuted if applicable. Finally, we 
recommend that authors clearly indicate whether cou-
pling analyses were done within or across subjects and 
show the whole range of the distribution or histogram for 
each of the variables entering the analysis.

4   |   CONSIDERATIONS FOR 
STATISTICAL ANALYSIS AND DATA 
FIGURES

The previous sections highlighted the abundance of de-
pendent variables and the richness of information that 
may be obtained in studies of oscillatory activity. The 
number of potential variables (e.g., metrics of power, 
phase, phase-locking, inter-area, and inter-frequency in-
teractions) as well as their high-dimensional nature (i.e., 
time, location, frequency) pose-specific demands on sta-
tistical procedures. In the following sections, we focus on 
statistical approaches that are particularly relevant when 
dealing with high-dimensional data and methods for ad-
dressing other challenges specific to the measures of os-
cillatory activity discussed above. Readers with a broader 
interest in the foundations of measurement and statistical 
analysis of neural data are directed to available guidelines 
and review papers (Keil et al., 2014; Luck, 2005; Luck & 
Gaspelin, 2017; Maris, 2012).

4.1  |  Statistical analysis with spectral 
outcome variables

Almost always, the main interest in electrophysiological 
studies pertains to the difference between two or more 
experimental conditions and/or groups. Therefore, a nec-
essary, but not sufficient requirement for an informative 
empirical result is a reliable difference between conditions. 
In practice, almost always, the significance of this differ-
ence is evaluated by means of a statistical test. Theory and 
application of statistical tests are well established, but only 

for the case of univariate/scalar observations (e.g., power 
in a given channel and frequency band). Care must be 
taken, however, since power values are non-normally dis-
tributed. Either normalizing corrections or nonparamet-
ric statistical procedures are preferred. Between condition 
comparisons of whole spatio-spectral matrices (multivari-
ate observations) require specialized statistical methods, 
two of which will be discussed in the following (see 4.1.1. 
and 4.1.2.). Both methods effectively deal with the so-
called multiple comparison problem: Inflation of the Type 
I error (false alarm) rate, which may occur if univariate 
statistical tests are applied to multivariate observations.

4.1.1  |  Methods based on regions of interest

A region of interest (ROI) comprises a set of channel-
frequency or area-frequency pairs or channel/area-
time-frequency triplets at which a between-conditions 
difference is expected to occur. This ROI must be chosen 
before the data are known. If the power values (or any 
other measure) are averaged over these channel-frequency 
pairs, then the original multivariate problem reduces to a 
univariate problem, and standard statistical tests (t test, 
F-test) may be applied. There are three ways of determin-
ing an ROI: (1) based on published results and/or hypoth-
eses, (2) based on an anatomical atlas, in an estimated 
source space, and (3) based on a localizer (Maris, 2012). 
In cases where published results and/or a priori hypoth-
eses are used for determining an ROI, preregistration of 
this ROI-based analysis is recommended. It is possible to 
use multiple ROIs. In that case, Bonferroni (usually too 
conservative, as it assumes that the tests are uncorrelated) 
or some other correction method must be used to prevent 
Type I error inflation as a result of the multiple tests (one 
per ROI).

4.1.2  |  Mass univariate techniques

In its simplest form, the mass univariate technique is a 
generalization of the ROI-based method, with one ROI 
per channel-frequency pair. Unfortunately, the typical 
Bonferroni correction drastically reduces the sensitivity of 
this approach. The overly conservative nature of Bonferroni 
correction is due to the fact that many of the statistical com-
parisons are not independent of each other. To increase 
sensitivity, methods have been proposed that are based 
on permutation test statistics that depend on all channel-
frequency pairs jointly (Maris & Oostenveld, 2007). These 
include selecting the maximum (minimum) test-statistic 
from each permutation (Karniski et al., 1994) and forming a 
tmax or Fmax distribution that is used in place of the statistical 
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reference distribution (student’s t, or F-distribution). The 
most popular of these statistics is the so-called cluster-based 
tests, which start from the univariate test statistics for all 
channel-frequency pairs and then combine these test statis-
tics in a way that reflects the spatio-spectral clustering that 
one observes with genuine physiological effects. Using the 
permutation distribution as a reference distribution, these 
cluster-based tests control for the Type I Error rate under 
the null hypothesis of identical probability distributions 
for the raw spatiotemporal data in the two conditions and 
therefore also for the derived spatio-spectral data (Maris & 
Oostenveld, 2007).

When reporting results from cluster-based permuta-
tion tests, it is important to be aware that the null hy-
pothesis pertains to the whole raw spatiotemporal data 
matrix. Therefore, it is not permissible to make spatially 
and/or spectrally specific inferences such as, “There 
was an effect over area A in frequency band X, but not 
over area B in frequency band Y.” This point has been 
made in several publications (Maris,  2012; Maris & 
Oostenveld,  2007; Piai et al.,  2015). For a tutorial and 
recommendations regarding appropriate language, read-
ers are referred to the helpful discussion by Sassenhagen 
and Draschkow (2019).

4.1.3  |  Usage of principal component 
analysis for data reduction

PCA is often applied to spatiotemporal electrophysiological 
data to identify linear combinations of sensors (i.e., com-
ponents) that explain the most variance. Decomposition 
methods related to PCA have been proposed for the analy-
sis of coherence patterns across electrode locations. These 
are routinely obtained in the form of cross-spectral density 
or coherence matrices for a range of frequencies (van der 
Meij et al., 2015). These methods do not produce compo-
nents that explain the most variance, but components that 
explain the data using the most parsimonious three-way 
tensor decomposition. Although these methods produce 
physiologically plausible components (see van der Meij 
et al., 2016), they do not necessarily correspond to existing 
physiological sources. This is because, in most cases, there 
are a large number of plausible arrangements of the vari-
ance across coherence patterns that can equally account 
for the data, making solutions not unique.

4.1.4  |  Bayesian statistics and machine 
learning approaches

In addition to the multivariate and mass univariate meth-
ods for traditional null hypothesis testing described above, 

the field of neuroscience has seen a steady increase in 
usage of Bayesian approaches for modeling and statisti-
cal testing. Bayesian approaches share the common goal 
of quantifying the extent to which prior knowledge is up-
dated by new data (van de Schoot et al., 2021). In the con-
text of neural time series analysis, Bayesian approaches 
have been used for combining information obtained from 
different measurement modalities (Kook et al., 2021), as 
well as hierarchically modeling different sources of vari-
ance that contribute to a neural time series (Gorrostieta 
et al., 2013; Zhang et al., 2016). An increasingly popular 
Bayesian index is the Bayes factor, which has some simi-
larity in use and interpretation with traditional null hy-
pothesis test statistics (e.g., p values). However, its usage 
remains a matter of debate in the literature, and research-
ers are encouraged to consider potential limitations, such 
as the dependence on the precise shape of the prior dis-
tributions that are compared by means of the Bayes fac-
tor, along with potential strengths (Keysers et al., 2020). 
In hypothesis testing, Bayes factors are frequently used 
to express the amount of support for a given hypothesis 
over another (e.g., the null hypothesis vs. alternative hy-
pothesis). For example, the extent to which differences 
in EEG signals across different experimental conditions 
are in agreement with one of several a priori probability 
distributions is readily expressed as a Bayes factor (Kopp 
et al., 2016). Bayes factors can also be used to transitively 
compare different models to each other (see Thigpen 
et al., 2019, for an example). Because Bayes factors do not 
involve rejection of a null hypothesis based on the likeli-
hood of a parameter to occur, they are not as strongly af-
fected by multiple-comparison problems that need to be 
considered in traditional frequentist null hypothesis test-
ing (e.g., Gelman et al., 2012). As such, they can be used 
for scalp mapping (e.g., Stegmann et al., 2020) as well as 
point-wise time series analyses (Antov et al., 2020). A final 
consideration is that Bayes factors may be used to quan-
tify the absence of evidence, such as support for the null 
hypothesis, which is not readily accomplished in a null 
hypothesis testing framework (Keysers et al., 2020).

An extensive discussion of Bayesian statistical tech-
niques is outside the scope of the present report. A general 
set of guidelines are given in van de Schoot et al. (2021). 
Authors using Bayesian approaches in electrophysio-
logical work are directed to recent recommendations 
for reporting and preregistration of ERP studies (Paul 
et al., 2021), which contain suggested language and infor-
mation. Notably, replication of Bayesian methods involves 
a precise description of the priors along with the models 
included in the analysis. If Bayes factors are used, includ-
ing a rationale for the interpretation of different levels of 
Bayes factors, as well as what exact software implementa-
tion was used for their estimation, is recommended.
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Finally, machine learning approaches have been in-
creasingly used, notably in decoding analyses that use 
classification algorithms such as logistic regression, dis-
criminant analysis, and support vector machines (e.g., 
Bae & Luck,  2019). For example, researchers have used 
these techniques to examine the extent to which time-
varying alpha power topographies contain decodable in-
formation regarding an observer’s visuo-spatial attention 
focus (Bae & Luck,  2018) or responses to conditioned 
stimuli (Riels et al., 2022). When using these methods, 
reporting the specific algorithm used, including the soft-
ware implementation, along with the exact method for 
cross-validation and model evaluation, is recommended. 
Decoding (i.e., classification) accuracy should be reported 
as a proportion and confusion matrices indicated if possi-
ble. If resampling (e.g., permutation) methods are used to 
address multiple comparisons, then the reporting guide-
lines in Section 4.1 should be applied. In a similar vein, 
inverted encoding models have been increasingly used to 
examine tuning of neural variables to specific feature di-
mensions, such as orientation, location, or facial expres-
sion (e.g., Garcia et al., 2013). When using such models, 
including a description of how model fit was evaluated 
and how noise was addressed (Liu et al., 2018) is recom-
mended. Similarly, when model weights are interpreted 
and reported, including a discussion of how weights were 
extracted from the model and how noise contributions 
were addressed (Haufe et al., 2014) is recommended.

4.2  |  Recommendations for data figures

Many of the analytical strategies, methods, and algorithms 
discussed above make use of high-dimensional aspects of 
neurophysiological time series, often reflecting a combi-
nation of spatial, temporal, and/or frequency information. 
Therefore, the resulting data figures are often high-
dimensional (e.g., connectivity matrices, cross-frequency 
interaction maps) and therefore difficult to present in two-
dimensional journal space. Color coding of third dimen-
sions and use of multi-panel figures are widely accepted 
ways to address this issue. To the extent that most pub-
lication outlets provide options for supplemental online 
materials, authors may also wish to document complex, 
high-dimensional data using suitable digital representa-
tions, which may include data shown in figures, movies, 
or code. In a similar vein, sharing code and data through 
widely accessible portals such as github, https://github.
com, the open science framework, https://osf.io, open-
neuro, https://openn​euro.org, databrary, https://nyu.
datab​rary.org, etc., further enables readers to illustrate 
data in a way that is intuitive to them, thus facilitating 
communication, reproducibility, and replicability.

4.2.1  |  Recommendations for illustrating 
distributions of the dependent variable

Reduced data, pooled across frequencies, sensors, time 
points, etc., are often used as dependent variables for hy-
pothesis testing. A discussion of how to illustrate such 
low-dimensional data is outside the scope of the present 
paper. Many journals have encouraged authors to join re-
cent discipline-wide trends toward providing distribution-
based figures instead of, or in addition to, bar plots 
showing measures of central tendency. One goal of this 
trend is to clearly illustrate inter-participant variability, 
aiding in communication of robustness and effect size. 
Such figure types include scatter plots, so-called violin 
plots, pirate plots, histograms, and smoothed distribution 
plots, popular in the context of Bayesian approaches. They 
are useful for illustrating dependent variables after sub-
stantial data reduction and allow readers to assess consist-
ency of effects, as well as providing a visual impression 
of effect size (Rousselet et al.,  2016). Many widely used 
statistics packages include methods for producing such 
distribution-based plots (e.g., Kampstra,  2008). Often, 
distribution-based figures will be accompanied by data 
figures illustrating spatial and temporal aspects of the 
data, discussed next.

4.2.2  |  Recommendations for line graphs

Two-dimensional plots such as mean power values across 
time points, frequencies, and sensors often serve to illus-
trate time course data, similar to figures in ERP studies. 
Spectral power is also often illustrated as a line or bar 
graph plotted with two dimensions, frequency and power. 
Often, recommendations for line graphs parallel published 
recommendations for ERP work (Keil et al., 2014; Picton 
et al., 2000). These recommendations include clearly labe-
ling the x axis and y axis, with reference time points (e.g., 
stimulus onset) indicated by appropriate markers such as 
a vertical line. The physical unit should be prominently 
labeled near the appropriate axis, which will often be the 
y axis. Furthermore, clearly visible tick marks at appro-
priate spacing assist readers in correctly identifying time 
ranges of interest.

In addition, shaded error areas around line plots 
(Figure  8) have become increasingly used and are rec-
ommended because they allow readers to recognize time 
ranges with higher versus lower variability. The type of 
variability index that is most helpful will depend on the 
study questions and the hypotheses being tested. Metrics 
of between-subjects variability (e.g., the standard devia-
tion or standard error of the mean) are most informative 
in studies with between-subjects designs, such as group 

https://github.com
https://github.com
https://osf.io
https://openneuro.org
https://nyu.databrary.org
https://nyu.databrary.org
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comparisons or correlational studies of inter-individual 
differences. They are also widely used to illustrate vari-
ability in within-subjects designs. As an alternative, 
these latter studies may also consider displaying suitable 

estimates of within-subjects variability across conditions, 
often more pertinent for illustrating the robustness of con-
dition differences (Cousineau, 2005, 2017).

4.2.3  |  Recommendations for higher-
dimensional figures such as time-by-
frequency plots

Displaying changes in power across a time-by-frequency 
plane is often accomplished by color coding power, phase-
locking, or another frequency domain index as a third di-
mension, resulting in a figure as shown in Figure 9. Given 
concerns discussed above regarding broadband phenom-
ena being misinterpreted as band specific, it is highly rec-
ommended that time-frequency plots include a sufficient 
number of frequencies to illustrate the extent to which 
any effects are specific to a given frequency band. Often, 
this will involve including low frequencies, which assists 
in identifying transient responses masquerading as high-
frequency oscillatory bursts. Conveying the information 
of interest is facilitated by selecting a color or grayscale 
scheme that appropriately translates distance in data space 
into distance in color space. For example, traditionally 
used color schemes ranging from blue to red often distort 
the representation of the numerical range and make small 
differences in the upper range of the distribution appear 
larger than they are (Karim et al.,  2019). Furthermore, 
the scientific community has increasingly prioritized ac-
commodating those with color vision conditions such 
as red-green blindness or yellow-blue blindness. Many 

F I G U R E  8   Example of a line figure with corresponding 
topography, showing time-varying alpha power changes, expressed 
in percent change from baseline, as indicated on the y axis. Data 
from electrode location oz are shown, and oz is highlighted in 
the topography shown in the inset. The baseline segment used 
for percent conversion is clearly marked, and a time axis showing 
stimulus onset at time zero is provided. Shaded error bars (here: 
Standard error of the mean) illustrate the variability of the 
time-varying power change across participants. The averaged 
topography across a time window (red line segment) is shown as 
the inset, highlighting the electrode from which the data are taken. 
It is accompanied by a color bar, which is labeled with the unit 
used (here: Percent change)

F I G U R E  9   Example of a time-frequency plot, showing the time-varying power at a range of different frequencies. The frequency axis 
is clearly labeled with the frequencies depicted in each row of the plot. Data from electrode location oz are shown, indicated in the top left 
corner. The baseline segment used for percent change conversion is clearly marked, and a time axis showing stimulus onset at time zero is 
provided. It is accompanied by a color bar, which is labeled with the unit used (here: Percent change from baseline). Note that calculating 
percent change implicitly assumes a multiplicative model of change in oscillatory power. Authors may wish to make this assumption explicit 
and provide the underlying rationale in the manuscript
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colormaps exist that accomplish veridical representation 
of the numerical range while also allowing people with 
color vision conditions to glean the appropriate informa-
tion from the figure (Nuñez et al.,  2018). Examples in-
clude colormaps with names, such as “Viridis”, “Magma”, 
or “Cividis”, implementable in most programming envi-
ronments. Authors are encouraged to consider the range 
of the data and select an appropriate colormap, ensuring a 

fair and complete representation of the data range across 
the color range. For example, in raw power plots without 
baseline removal or normalization, power values are non-
negative, and thus a unipolar map is preferred.

As discussed above (see Section 3.2), temporal smear-
ing is a challenge for the interpretation of time-frequency 
information. Thus, sufficient time before and after events 
of interest should be included in the figure, allowing 

T A B L E  2   Checklist for spectral analyses

# Information to be included in the manuscript Sections Completed?

1. Specifying the inputs and outputs of all algorithms used in the processing pipeline 1.3 Y/N

2. A discussion of how oscillatory activity was conceptualized relative to 1/f noise 
and/or other broadband phenomena (underlying model)

1.2, 2.1 Y/N

3. A rationale for the choice of measurement of power in a specific frequency band, 
including how nonperiodic (1/f) contributions to the spectrum were addressed

3.1 Y/N

4. A statement describing the specific type of Fourier- or non-Fourier-based 
algorithm used for transformation from the time domain to the frequency domain.

For non-Fourier analysis: (1) If using parametric spectral analysis, the extent to which 
the assumption that the observed data are reflections of stochastic processes 
identified through autoregressive models. Tests of statistical stationarity of the time 
series can be used to address this assumption. (2) If using data-driven methods (e.g., 
Half-wave analyses, matching pursuit algorithms, etc.), a description of the specific 
algorithm used, including code and example data, and preprocessing steps

1.1, 1.3, 2.4, & 3.1 Y/N

5. The exact duration of the time segments (e.g., duration of segmented trials 
and the duration of the temporal integration windows) used for transformation 
into the frequency domain for each condition of interest. In addition, the total 
number of segments (e.g., trials per condition) entering an averaged spectrum, 
along with how data epochs were combined within and across recordings (e.g., 
overlapping windows)

1.3.2, 2.3, 3.1, 3.2, & 
3.1.5

Y/N

6. The type, total number of, overlap between, and duration of any taper window 
functions, along with their ramp-on and ramp-off duration. If alternative and/
or additional steps were taken to address edge artifacts, these should be stated. 
If applicable, the choice of taper window function should be specified as being 
guided by computational principles and/or by aiming to replicate current 
methods (e.g., Hann or Hamming window)

3.1.3 & 3.1.5 Y/N

7. If zero-padding is applied, the number and location of added zeros (e.g., before the 
time series, after the time series, or both before and after the time series)

2.3 Y/N

8. All normalization steps (e.g., by length of time, multiplication of the lower half of 
the spectrum, or by the complex conjugate, etc.) applied to the spectral power or 
power density calculation

3.1.1 & 3.1.5 Y/N

9. The native frequency resolution of the spectrum (e.g., 1/(epoch duration in 
seconds). In addition, the number of frequency bins extracted for a specific band 
of interest, and the range of these bins (e.g., 7.98 Hz to 11.97 Hz)

1.3.2, 2.3, & 3.1.5 Y/N

10. Whether analyses were conducted using single trials or the average across trials 3.2.1 Y/N

11. How band power was measured from a spectrum. The following recommendations 
are provided: (1) If measuring raw band power, report the full spectrum the band 
was extracted from, how the band was measured (i.e., mean, median, and peak), 
and how 1/f effects or other spectral shape effects were addressed. (2) If measuring 
relative band power, the full power spectrum should be reported, along with how 1/f 
effects or other spectral shape effects were addressed (note that this method is not 
recommended). (3) If measuring band power ratios between specific frequencies, 
describe the full power spectrum, including the calculation of specific frequency 
band power (note that this method is not recommended)

3.1.2 Y/N



30 of 37  |      Keil et al.

readers to assess the variability in the information pro-
vided and to understand the time course. In the case 
of spectrograms or similar analyses with fixed window 
length, it is also helpful if the figure includes a represen-
tation of the window length used to compute the time-
frequency representation. Authors may opt to discuss key 
metrics of temporal smearing such as the FWHM or stan-
dard deviation in the time domain or in the frequency 
domain in the figure caption to facilitate reading.

4.2.4  |  Recommendations for figures with 
topographical information

Many methods exist for topographically mapping physi-
cal or statistical indices of frequency domain activity onto 
spatial representations of the head or brain. Often, these 

will involve interpolation of values into the inter-electrode 
spaces on a scalp volume or brain volume. In these cases, 
specifying the interpolation method (e.g., linear interpo-
lation, spline interpolation, machine learning-based ap-
proaches) is critical for reproduction and communication 
of findings, because some interpolation techniques contain 
underlying assumptions regarding the nature of the inter-
polated data (Brunet et al., 2011; Perrin et al., 1987), and 
different interpolation methods may yield drastically differ-
ent results at certain locations of the brain or head volume.

4.2.5  |  Recommendations for figures 
showing spatial relations

Authors may be interested in examining spatial relations be-
tween sensors or brain regions. A wide variety of methods is 

T A B L E  3   Checklist for time-frequency analyses

# Information to be included in the manuscript Sections Completed?

1. The specific stage of processing in which time-frequency analysis was applied 
(e.g., single-trials, after trial averaging, etc.). This clarifies which aspect(s) of 
oscillatory activity (e.g., spontaneous and/or induced, evoked, etc.) are being 
observed. If averaged potentials of each trial were subtracted prior to 
conducting time-frequency analyses on single trials, this step should be stated along 
with figures depicting the averaged potential in both time and frequency domains

3.2.1 Y/N

2. For authors using Fourier-based time-frequency analyses (spectrograms), the following 
recommendations are provided for each specific approach: (1) If using spectrograms, 
or moving-window DFT/FFT analyses, report the specific window size and step 
size. Additional within-window averaging achieved via algorithms (e.g., Welch 
periodogram method) should also be reported. (2) If using multitaper analyses, 
the type of tapering windows used, total number used, their center frequencies, 
whether any smoothing factors are applied, and the specific algorithms used to form 
their shapes should be reported. (3) If using complex demodulation, the frequencies 
examined, and the specific properties of the low-pass filter used (i.e., filter type, 
order, and cutoff frequency) should be reported

3.2.2 Y/N

3. For authors conducting time-frequency analyses based on time domain filtering 
methods (i.e., Filter-Hilbert or similar approaches), the software and version 
number of the Hilbert transform used to identify the phase-shifted version of the 
empirical signal. In addition, authors should state the specific properties of band-
pass filters (i.e., filter types, order, and cutoff frequencies)

3.2.3 Y/N

4. If using wavelet-based methods for time-frequency analyses, include the smoothing/
smearing for the minimum and maximum frequency of interest and indicate 
the maximal temporal and frequency smoothing for a specific wavelet family. In 
addition, if using Morlet wavelets, include the Morlet parameter (m) indicating the 
trade-off between time and frequency smoothing and smoothing values in the time 
(σt) and frequency (σf) domains

3.2.4 Y/N

5. As for frequency domain analyses, specify the duration of analytical time segments 
used, with pre- and post-event onset durations. In addition, include the number of 
time segments for each condition/group

3.2.6 Y/N

6. Descriptions of any nonlinear transformations and/or baseline adjustment 
that were used prior to statistical analyses, accompanied by a rationale for these 
decisions. Specifically, include the duration used as a baseline and the type of 
algorithm (e.g., division, subtraction, etc.) used for this adjustment

3.2.6 Y/N
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available, as discussed above (see Section 3.4), often resulting 
in high-dimensional dependence information, sometimes in-
cluding directional information. Major figure types include 
color-coded matrices illustrating pairwise dependence infor-
mation such as inter-site phase-locking or Granger causality 
and graphs illustrating connectivity/dependency as lines or 
arrows between spatial nodes. For color-coded dependence 
maps, the recommendations for time-frequency plots above 
apply. Using clearly labeled axes and including a clearly vis-
ible color bar, mapping colors to numerical values, is recom-
mended. Connectivity graphs with nodes likewise benefit 
from clearly labeled nodes and require clear definitions and 
figure legends defining the implications of graphical elements, 
such as line thickness, arrow direction, line style, shading, 
or any other graphical indicators of inter-node dependence. 
Any thresholding used to limit the lines shown should also be 
made explicit in the methods and figure caption.

5   |   CHECKLISTS

In order to facilitate communication concerning ter-
minology, best practices in methodology, assessment, 
transparency, and replication, and to provide a general 

guideline for studies concerning oscillatory brain ac-
tivity, we have provided a set of detailed checklists au-
thors are encouraged to address in their manuscripts 
for publication. Table 2 covers principal methodologi-
cal elements of spectral analyses. Given that all forms 
of oscillatory measures (e.g., time-frequency analysis, 
phase-based analyses, etc.) include these fundamental 
properties, researchers conducting any form of spec-
tral analysis should provide the information in Table 2. 
Table 3 expands upon the spectral domain guidelines 
by including information pertinent to time-frequency 
analyses. This encompasses what specific elements 
should be reported based on the methodology used 
to conduct time-frequency analysis. Additional tables 
provide recommendations for phase-based analyses 
(Table 4), connectivity analyses (Table 5), and coupling 
analyses (Table 6). Additional guidelines for reporting 
figures can be found in Table 7. Although not directly 
covered here, authors are also encouraged to include 
additional details highlighted in previous reports (Keil 
et al.,  2014; Picton et al.,  2000) pertaining to general 
EEG/MEG methods, such as equipment recording 
characteristics, preprocessing steps, and stimulus tim-
ing parameters.

T A B L E  4   Checklist for phase-based analyses

# Information to be included in the manuscript Sections Completed?

1. Properties of filters used (i.e., filter type, order, and cutoff frequency). A high level 
of detail is needed especially if using high filter orders and/or filtering in narrow 
frequency bands

3.3.1 Y/N

2. If applying advanced artifact removal techniques (e.g., ICA), authors are 
encouraged to consider reporting results with and without the use of these 
methods. Specific preprocessing pipeline steps should also be described

3.3.1 Y/N

3. The input of phase-based analyses, including the frequency specificity of the 
algorithm and/or filters used. Furthermore, authors should not estimate phase of 
broadband signals. Non-normality of indices (e.g., being bounded between 0 and 
1) should be addressed appropriately in averaging and statistical testing

3.3.1 Y/N

4. The number of trials used in the analysis per condition or group. Should be reported 
along with steps taken to address unequal trials counts. For example, a description 
of how equal trial numbers for each condition were achieved by randomly 
dropping trials or how the algorithm used addresses unequal trial counts

3.3.1 Y/N

T A B L E  5   Checklist for connectivity analyses

# Steps to be addressed in the manuscript Sections Completed?

1. The specific source-modeling approach is described, including the metrics and 
algorithms used with references to these methods. This should also be done if using 
Graph theory to assess connectivity matrices

3.4.3 Y/N

2. Methods and algorithms used to address volume conduction and/or spatial smearing 
are detailed, providing specific references or mathematical formulations

3.4.4 Y/N

3. State the extent to which spatial nodes were examined ad hoc or specified a priori 3.4.4 Y/N



32 of 37  |      Keil et al.

ACKNOWLEDGMENTS
This work was supported by National Institute of Mental 
Health grants R01MH112558 and R01MH125615 to 
A. Keil and M. Ding and NIA grant RF1AG062666 to 
G. Gratton and M. Fabiani. The authors would like to 

thank the many researchers who commented on previ-
ous versions of this manuscript. The authors are par-
ticularly grateful to the following individuals for their 
input at various stages of manuscript preparation: 
Martin Antov, Felix Bartsch, Maeve Boylan, Margaret 

T A B L E  6   Checklist for coupling analyses

# Steps to be addressed in the manuscript Sections Completed?

1. The specific preprocessing steps and algorithm used to perform cross-frequency 
coupling analyses. A statement is included regarding the number of trials per 
condition and steps used to ensure equal trials per condition. If binning is used, 
state the number of bins used

3.5.3 Y/N

2. The extent to which variables are normally distributed is described along with 
appropriate parametric or nonparametric statistical tests. This often will include 
showing the range and distribution of variables used in analyses. If data are 
randomized/permuted to determine statistical significance, the specific algorithms 
and code used should be reported

3.5.4 Y/N

3. It is stated whether coupling analyses and randomization/permutation were conducted 
within participants, between participants, or in a mixed design

3.5.4 Y/N

T A B L E  7   Checklist for data figures

# Steps to be addressed Sections Completed?

1. Including distributions in figures is encouraged where possible. Distribution-based figures 
are preferred, showing inter-participant variability, such as scatterplots, violin plots, pirate 
plots, histograms, smoothed distribution plots, and/or bar/line plots including individual 
subject data points.

Often, within-participant variability will be of greater interest, and thus authors may wish to 
consider connected line plots displaying within-participant effects for each participant

4.2.1 Y/N

2. If using line graphs to represent power values across time, frequency, or sensor(s)/sources, the 
x- and y-axes are clearly labeled with reference points associated with specific markers 
(e.g., time points with a vertical line indicating stimulus onset). The unit of measurement 
is labeled near each respective axis, with clear tick marks indicating x and y ranges of 
interest.

Authors may also consider applying shaded areas along line plots to indicate ranges with 
lower versus higher variability

4.2.2 Y/N

3. If displaying changes in frequency power across time, authors may use color coding to 
illustrate the third dimension (e.g., power). In addition to the requirements described for 
line plots (i.e., clearly labeled x- and y-axes with respective units), time-frequency plots 
should contain sufficient frequencies above and below a range where an effect 
is observed to demonstrate frequency specificity (e.g., to demonstrate specificity of 
changes at 8–12 Hz, a y range that extends beyond this region is needed, such as from 2 to 
50 Hz). Similarly, time units should extend far before and after events of interest to allow 
for assessment of any temporal smearing effect. Furthermore, authors should use color 
schemes that facilitate veridical representations of value ranges and accommodate those 
with color vision deficits

If using a spectrogram, or moving-window approach, authors are encouraged to include a 
figure element depicting the window length used.

4.2.3 Y/N

4. If depicting topography of frequency domain activity across the scalp, include the 
interpolation method used for calculating values into an inter-electrode space across the 
scalp

4.2.4 Y/N

5. If reporting spatial relationships between sensors/sources, figures using color-coded matrices 
to depict pair-wise dependent information and/or graphs demonstrating connectivity 
lines/arrows between spatial nodes may be used. Include clearly labeled x- and y-axes 
and color bars. For connectivity graphs, nodes should be clearly labeled

4.2.5 Y/N
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